Skip to main content

Advertisement

Log in

An industrial feasible and sustainable method for preparing fiberized bamboo-derived magnetic biomass carbon

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

With the progress of science and technology and the improvement of people’s living standards, the high-value utilization of waste bamboo materials and the increasingly serious problem of electromagnetic wave (EMW) pollution have attracted more and more attention. The above two problems can be solved simultaneously by overcoming the structural defects of bamboo, such as dense arrangement of fiber cells, horizontal gradient stratification and so on, realizing the impregnation of inorganic materials, and then obtaining magnetic biochar-based EMW absorbers by in situ pyrolysis. Here, we carry out fibrosis treatment to obtain bamboo bundles with significantly increased specific surface area and a large number of exposed inner walls of fiber cells. After that, the bamboo bundles are impregnated in iron acetylacetonate (Fe(acac)3) DMF solution with concentrations of 0.04, 0.08 and 0.12 g/mL, and fiberized bamboo-derived magnetic biomass carbon (FBMC) are finally prepared through in situ pyrolysis technology. The results show that the EMW absorption performance of the prepared FBMCs is best with an impregnation concentration of 0.04 g/mL, and the minimum reflection loss is − 28.21 dB at 13.40 GHz with a matching thickness of 3 mm. With further increase of the impregnation concentration, the magnetic properties and electrical conductivities of FBMCs are enhanced, but their corresponding EMW absorption performance is deteriorated. Further research shows that the absorption capacities mainly come from the good dielectric loss caused by the interfacial polarization effect, and the magnetic loss caused by natural and exchange response. It is proved that the attenuation ability of FBMC-0.04 to EMW energy mainly comes from EMW absorption behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Z. Huang, Y. Sun, Constr. Build. Mater. 271, 121602 (2020). https://doi.org/10.1016/j.conbuildmat.2020.121602

    Article  Google Scholar 

  2. Z. Lou, T. Yuan, Q. Wang, X. Wu, S. Hu, X. Hao, X. Liu, Y. Li, J. Renew. Mater. 9, 959–977 (2021). https://doi.org/10.32604/jrm.2021.014285

    Article  CAS  Google Scholar 

  3. R. Wang, Z. Guo, C. Cai, J. Zhang, F. Bian, S. Sun, Q. Wang, Clean Technol. Environ. Policy (2021). https://doi.org/10.1007/s10098-021-02074-3

    Article  Google Scholar 

  4. Z. Lin, J. Chen, J. Zhang, M.S.-L. Brooks, Food Bioprocess Technol. 11, 901–912 (2018). https://doi.org/10.1007/s11947-018-2088-3

    Article  CAS  Google Scholar 

  5. H. Shao, H. Zhao, J. Xie, J. Qi, T.F. Shupe, Int. J. Polym. Sci. (2019). https://doi.org/10.1155/2019/7231263

    Article  Google Scholar 

  6. Y. Li, B. Xing, Y. Ding, X. Han, S. Wang, Bioresour. Technol. 312, 123614 (2020). https://doi.org/10.1016/j.biortech.2020.123614

    Article  CAS  Google Scholar 

  7. S.Y. Foong, R.K. Liew, Y. Yang, Y.W. Cheng, P.N.Y. Yek, W.A.W. Mahari, X.Y. Lee, C.S. Han, D.-V.N. Vo, Q.V. Le, M. Aghbashlo, M. Tabatabaei, C. Sonne, W. Peng, S.S. Lam, Chem. Eng. J. 389, 124401 (2020). https://doi.org/10.1016/j.cej.2020.124401

    Article  CAS  Google Scholar 

  8. W. Gu, J. Sheng, Q. Huang, G. Wang, J. Chen, G. Ji, Nano-Micro Lett. (2021). https://doi.org/10.1007/s40820-021-00635-1

    Article  Google Scholar 

  9. C. Zhang, C. Long, S. Yin, R.G. Song, B.H. Zhang, J.W. Zhang, D.P. He, Q. Cheng, Graphene-based anisotropic polarization meta-filter. Mater. Design 206, 109768 (2021). https://doi.org/10.1016/j.matdes.2021.109768

    Article  CAS  Google Scholar 

  10. H. Jian, Q. Qi, W. Wang, D. Yu, Sep. Purif. Technol. 264, 118459 (2021). https://doi.org/10.1016/j.seppur.2021.118459

    Article  CAS  Google Scholar 

  11. J. Wang, H.-L. Duan, L. Fan, Y.-M. Lin, J.-N. Sun, Z.-Q. Zhang, Food Control 124, 107904 (2021). https://doi.org/10.1016/j.foodcont.2021.107904

    Article  CAS  Google Scholar 

  12. M. Asmael, B. Safaei, Q. Zeeshan, O. Zargar, A.A. Nuhu, Int. J. Adv. Manuf. Technol. (2021). https://doi.org/10.1007/s00170-021-06722-2

    Article  Google Scholar 

  13. S.G. Hamedani, M.H. Moaiyeri, M. Meghdadi, M.R. Khezeli, IEEE T. Comp. Pack. Man. 11(2), 302–311 (2021). https://doi.org/10.1109/TCPMT.2020.3045877

    Article  CAS  Google Scholar 

  14. M. Assali, N. Kittana, S. Dayyeh, N. Khiar, Nanotechnology 32(20), 205101 (2021). https://doi.org/10.1088/1361-6528/abe48c

    Article  CAS  Google Scholar 

  15. G. Lan, J. Yang, R.-P. Ye, Y. Boyjoo, J. Liang, X. Liu, Y. Li, J. Liu, K. Qian, Small Methods (2021). https://doi.org/10.1002/smtd.202001250

    Article  Google Scholar 

  16. Y. Li, Z. Xiao, H. Wu, H. Zhong, Y. Liu, G. Zhao, Y. Liu, J. Zeng, J. Alloys Compd. 865, 158912 (2021). https://doi.org/10.1016/j.jallcom.2021.158912

    Article  CAS  Google Scholar 

  17. Z.C. Lou, W.K. Wang, C.L. Yuan, Y. Zhang, Y.J. Li, L.T. Yang, J. Bioresour. Bioprod. 4(1), 43–50 (2019). https://doi.org/10.21967/jbb.v4i1.185

  18. C. Zhang, Y. Sheng, C. Long, B. Dong, D. He, Q. Cheng, Opt. Express (2021). https://doi.org/10.1364/OE.423245

    Article  Google Scholar 

  19. Z. Lou, R. Li, J. Liu, Q. Wang, Y. Zhang, Y. Li, J. Alloys Compd. 854, 157286 (2021). https://doi.org/10.1016/j.jallcom.2020.157286

    Article  CAS  Google Scholar 

  20. H. Lv, Z. Yang, B. Liu, G. Wu, Z. Lou, B. Fei, R. Wu, Nat. Commun. 12, 834 (2021). https://doi.org/10.1038/s41467-021-21103-9

    Article  CAS  Google Scholar 

  21. B. Quan, W. Gu, J. Sheng, X. Lv, Y. Mao, L. Liu, X. Huang, Z. Tian, G. Ji, Nano Res. 14(5), 1492–1501 (2021). https://doi.org/10.1007/s12274-020-3208-8

    Article  CAS  Google Scholar 

  22. Z. Zhao, X. Zhou, K. Kou, H. Wu, Carbon 173, 80–90 (2021). https://doi.org/10.1016/j.carbon.2020.11.009

    Article  CAS  Google Scholar 

  23. T. Hou, Z. Jia, S. He, Y. Su, X. Zhang, B. Xu, X. Liu, G. Wu, J. Colloid Interface Sci. 583, 321–330 (2021). https://doi.org/10.1016/j.jcis.2020.09.054

    Article  CAS  Google Scholar 

  24. H. Lv, Z.H. Yang, S.J.H. Ong, C. Wei, H.B. Liao, S.B. Xi, Y.H. Du, G.B. Ji, Z.C.J. Xu, A flexible microwave shield with tunable frequency-transmission and electromagnetic compatibility. Adv. Funct. Mater. 29, 1900163 (2019). https://doi.org/10.1002/adfm.201900163

    Article  CAS  Google Scholar 

  25. M. Zhou, W. Gu, G. Wang, J. Zheng, C. Pei, F. Fan, G. Ji, J. Mater. Chem. A. 8, 24267–24283 (2020). https://doi.org/10.1039/d0ta08372k

    Article  CAS  Google Scholar 

  26. Z. Zhang, J. Tan, W. Gu, H. Zhao, J. Zheng, B. Zhang, G. Ji, Chem. Eng. J. 395, 125190 (2020). https://doi.org/10.1016/j.cej.2020.125190

    Article  CAS  Google Scholar 

  27. H. Zhao, Y. Cheng, W. Liu, L. Yang, B. Zhang, L.P. Wang, G. Ji, Z.J. Xu, Nano-Micro Lett. 11, 24 (2019). https://doi.org/10.1007/s40820-019-0255-3

    Article  CAS  Google Scholar 

  28. Z. Lou, Y. Li, H. Han, H. Ma, L. Wang, J. Cai, L. Yang, C. Yuan, J. Zou, A.C.S. Sustain, Chem. Eng. 6, 15598–15607 (2018). https://doi.org/10.1021/acssuschemeng.8b04045

    Article  CAS  Google Scholar 

  29. W. Gu, X. Cui, J. Zheng, J. Yu, Y. Zhao, G. Ji, J. Mater. Sci. Technol. 67, 265–272 (2021). https://doi.org/10.1016/j.jmst.2020.06.054

    Article  Google Scholar 

  30. Z. Li, H. Lin, S. Ding, H. Ling, T. Wang, Z. Miao, M. Zhang, A. Meng, Q. Li, Carbon 167, 148–159 (2020). https://doi.org/10.1016/j.carbon.2020.05.070

    Article  CAS  Google Scholar 

  31. Z. Lou, Q. Wang, Y. Zhang, X. Zhou, R. Li, J. Liu, Y. Li, H. Lv, Compos. Part B 214, 108744 (2021). https://doi.org/10.1016/j.compositesb.2021.108744

    Article  CAS  Google Scholar 

  32. C. Jin, Q. Yao, J. Li, B. Fan, Q. Sun, Mater. Des. 85, 205–210 (2015). https://doi.org/10.1016/j.matdes.2015.07.016

    Article  CAS  Google Scholar 

  33. X. Hao, Q. Wang, Y. Wang, X. Han, C. Yuan, Y. Cao, Z. Lou, Y. Li, J. Wood Sci. 67(1), 26 (2021). https://doi.org/10.1186/s10086-021-01959-7

    Article  CAS  Google Scholar 

  34. F. Rusch, A.D. Wastowski, T.S. de Lira, K.C.C.S.R. Moreira, D. de Moraes Lucio, Biomass Convers. Biorefin. (2021). https://doi.org/10.1007/s13399-021-01359-3

    Article  Google Scholar 

  35. Y. Huang, Y. Qi, Y. Zhang, W. Yu, Adv. Polym. Technol. 2019, 2723191 (2019). https://doi.org/10.1155/2019/2723191

    Article  CAS  Google Scholar 

  36. L. Yang, Z. Lou, X. Han, J. Liu, Z. Wang, Y. Zhang, X. Wu, C. Yuan, Y. Li, Mater. Today Commun. 23, 101086 (2020). https://doi.org/10.1016/j.mtcomm.2020.101086

    Article  CAS  Google Scholar 

  37. W.-J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L.-J. Zhang, J.-Q. Wang, J.-S. Hu, Z. Wei, L.-J. Wan, J. Am. Chem. Soc. 138, 3570–3578 (2016). https://doi.org/10.1021/jacs.6b00757

    Article  CAS  Google Scholar 

  38. J. Xiang, J. Li, X. Zhang, Q. Ye, J. Xu, X. Shen, J. Mater. Chem. A. 2(40), 16905–16914 (2014). https://doi.org/10.1039/c4ta03732d

    Article  CAS  Google Scholar 

  39. C.R. Vestal, Z.J. Zhang, J. Am. Chem. Soc. 124, 14312–14313 (2002). https://doi.org/10.1021/ja0274709

    Article  CAS  Google Scholar 

  40. T. Hou, Z. Jia, B. Wang, H. Li, X. Liu, Q. Chi, G. Wu, Chem. Eng. J. 422, 130079 (2021). https://doi.org/10.1016/j.cej.2021.130079

    Article  CAS  Google Scholar 

  41. Z.-J. Fan, W. Kai, J. Yan, T. Wei, L.-J. Zhi, J. Feng, Y. Ren, L.-P. Song, F. Wei, ACS Nano 5, 191–198 (2011). https://doi.org/10.1021/nn102339t

    Article  CAS  Google Scholar 

  42. R. Azargohar, S. Nanda, J.A. Kozinski, A.K. Dalai, R. Sutarto, Fuel 125, 90–100 (2014). https://doi.org/10.1016/j.fuel.2014.01.083

    Article  CAS  Google Scholar 

  43. W. Tu, Y. Liu, Z. Xie, M. Chen, L. Ma, G. Du, M. Zhu, J. Colloid Interface Sci. 593, 390–407 (2021). https://doi.org/10.1016/j.jcis.2021.02.133

    Article  CAS  Google Scholar 

  44. H. Lv, Y. Li, Z. Jia, L. Wang, X. Guo, B. Zhao, R. Zhang, Compos. Part B Eng. 196, 108122 (2020). https://doi.org/10.1016/j.compositesb.2020.108122

    Article  CAS  Google Scholar 

  45. H. Lv, Z. Yang, H. Xu, L. Wang, R. Wu, Adv. Funct. Mater. 30, 1907251 (2020). https://doi.org/10.1002/adfm.201907251

    Article  CAS  Google Scholar 

  46. H.L. Lv, Z.H. Yang, P.L.Y. Wang, G.B. Ji, J.Z. Song, L.R. Zheng, H.B. Zeng, Z.C.J. Xu, A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device. Adv. Mater. 30, 1706343 (2018). https://doi.org/10.1002/adma.201706343

    Article  CAS  Google Scholar 

  47. X. Gao, Z. Jia, B. Wang, X. Wu, T. Sun, X. Liu, Q. Chi, G. Wu, Chem. Eng. J. 419, 130019 (2021). https://doi.org/10.1016/j.cej.2021.130019

    Article  CAS  Google Scholar 

  48. J. Wang, B. Wang, Z. Wang, L. Chen, C. Gao, B. Xu, Z. Jia, G. Wu, J. Colloid Interface Sci. 586, 479–490 (2021). https://doi.org/10.1016/j.jcis.2020.10.111

    Article  CAS  Google Scholar 

  49. H.L. Lv, H.Q. Zhang, J. Zhao, G.B. Ji, Y.W. Du, Achieving excellent bandwidth absorption by a mirror growth process of magnetic porous polyhedron structures. Nano Res. 9, 1813–1822 (2016). https://doi.org/10.1007/s12274-016-1074-1

    Article  CAS  Google Scholar 

  50. X. Zhou, Z. Jia, X. Zhang, B. Wang, X. Liu, B. Xu, B. Lei, G. Wu, Chem. Eng. J. 420, 129907 (2021). https://doi.org/10.1016/j.cej.2021.129907

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by financial support from the National Natural Science Foundation of China (No. 31971740), Jiangsu Agricultural Science and Technology Independent Innovation Fund (CX (20)3041), Open Fund of Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology (ICBR-2020-08).

Author information

Authors and Affiliations

Authors

Contributions

FY and SW prepared the samples, and analyzed and interpreted the obtained results. WQ and ZY performed the SEM, XRD, XPS, Raman and VSM characterizations. FY performed the electromagnetic characteristics and calculated the relevant parameters of electromagnetic wave absorption. FY and SW are major contributors in writing the manuscript. LZ and LY design the experiments and help to analyze the data. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lou Zhichao or Li Yanjun.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1390 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, F., Wei, S., Zhichao, L. et al. An industrial feasible and sustainable method for preparing fiberized bamboo-derived magnetic biomass carbon. J Mater Sci: Mater Electron 32, 26137–26150 (2021). https://doi.org/10.1007/s10854-021-06498-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06498-x

Navigation