Skip to main content
Log in

High-performance ammonia gas sensor based on bimetallic oxide Zn2SnO4 decorated with reduced graphene oxide

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The coupling effect and synergistic effect between the two metal elements of the bimetallic oxide make it has unique electrical characteristics and gas-sensitive properties, but it has the limitation of low conductivity. In this paper, the bimetallic oxide Zn2SnO4 was decorated with reduced graphene oxide (rGO) to increase its electrical conductivity and promote charge transfer during gas adsorption, which enhances the response and shortens the response time of the bimetallic oxide gas sensor. The high-performance ammonia sensor based on Zn2SnO4/rGO nanocomposite material was prepared by environmentally friendly hydrothermal method and spin coating technology. The structure and properties of composite materials were analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The ammonia sensing performance of Zn2SnO4/rGO nanocomposite sensor was tested at room temperature, including the dynamic response, response/recovery time, selectivity, repeatability, long-term stability. It showed a good sensing response to ammonia (22.94 for 100 ppm), and a fast response/recovery time (20 s/27 s). Finally, the response mechanism of Zn2SnO4/rGO nanocomposite sensor is explained. The enhanced ammonia sensing properties of Zn2SnO4/rGO nanocomposite sensor were ascribed to the synergistic effect and p–n heterojunction between Zn2SnO4 and rGO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Das, S. Das, M. Karmakar, S. Chakraborty, D. Saha, M. Pal, Novel barium hexaferrite based highly selective and stable trace ammonia sensor for detection of renal disease by exhaled breath analysis. Sens. Actuators B 325, 128765 (2020)

    Article  CAS  Google Scholar 

  2. D. Zhang, Z. Yang, P. Li, M. Pang, Q. Xue, Flexible self-powered high-performance ammonia sensor based on Au-decorated MoSe2 nanoflowers driven by single layer MoS2-flake piezoelectric nanogenerator. Nano Energy 65, 103974 (2019)

    Article  CAS  Google Scholar 

  3. D. Wang, D. Zhang, Y. Yang, Q. Mi, J. Zhang, L. Yu, Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered organ-like MXene/metal organic frameworks-derived CuO nanohybrid ammonia sensor. ACS Nano 15, 2911–2919 (2021)

    Article  CAS  Google Scholar 

  4. Q.Z. Xue, H.J. Chen, Q. Li, F. Besenbacher, M.D. Dong, Room-temperature high-sensitivity detection of ammonia gas using the capacitance of carbon/silicon heterojunctions. Energy Environ. Sci. 3, 288–291 (2010)

    Article  CAS  Google Scholar 

  5. D. Zhang, J. Liu, B. Xia, Quantitative detection of formaldehyde and ammonia gas via metal oxide-modified graphene-based sensor array combining with neural network model. Sens. Actuators B 240, 55–65 (2017)

    Article  CAS  Google Scholar 

  6. D.Z. Zhang, Z.M. Yang, S.J. Yu, Q. Mi, Q.N. Pan, Diversiform metal oxide-based hybrid nanostructure for gas sensing with versatile prospects. Coord. Chem. Rev. 413, 213272 (2020)

    Article  CAS  Google Scholar 

  7. S.L. Peng, Z.H. Wang, R. Liu, B. Jian, J.T. Wu, Controlled oxygen vacancies of ZnFe2O4 with superior gas sensing properties prepared via a facile one-step self-catalyzed treatment. Sen. Actuators B 288, 649–655 (2019)

    Article  CAS  Google Scholar 

  8. Y. Zhao, X.F. Li, B. Yan, D.B. Xiong, D.J. Li, S. Lawes, X.L. Sun, Recent Developments and Understanding of Novel Mixed Transition-Metal Oxides as Anodes in Lithium Ion Batteries. Adv. Energy Mater. 6, 1502175 (2016)

    Article  Google Scholar 

  9. J. Wang, H. Li, S. Meng, L. Zhang, X. Fu, S. Chen, One-pot hydrothermal synthesis of highly efficient SnOx/Zn2SnO4 composite photocatalyst for the degradation of methyl orange and gaseous benzene. Appl. Catal. B 200, 19–30 (2017)

    Article  CAS  Google Scholar 

  10. W.Q. Wu, D. Chen, R.A. Caruso, Y.B. Cheng, Recent progress in hybrid perovskite solar cells based on n-type materials. J. Mater. Chem. A 5, 10092–10109 (2017)

    Article  CAS  Google Scholar 

  11. C.T. Cherian, M. Zheng, M.V. Reddy, B.V.R. Chowdari, C.H. Sow, Zn2SnO4 nanowires versus nanoplates: electrochemical performance and morphological evolution during Li-cycling. ACS Appl. Mater. Interfaces 5, 6054–6060 (2013)

    Article  CAS  Google Scholar 

  12. D. Zhang, X. Zong, Z. Wu, Y. Zhang, Hierarchical self-assembled SnS2 nanoflower/Zn2SnO4 hollow sphere nanohybrid for humidity sensing applications. ACS Appl. Mater. Interfaces 10, 32631–32639 (2018)

    Article  CAS  Google Scholar 

  13. T.T. Xu, X.F. Zhang, Z.P. Deng, L.H. Huo, S. Gao, Synthesis of Zn2SnO4 octahedron with enhanced H2S gas-sensing performance. Polyhedron 151, 510–514 (2018)

    Article  CAS  Google Scholar 

  14. H.M. Yang, S.Y. Ma, H.Y. Jiao, Q. Chen, Y. Lu, W.X. Jin, W.Q. Li, T.T. Wang, X.H. Jiang, Z. Qiang, H. Chen, Synthesis of Zn2SnO4 hollow spheres by a template route for high-performance acetone gas sensor. Sens. Actuators B 245, 493–506 (2017)

    Article  CAS  Google Scholar 

  15. D.Z. Zhang, Z.L. Wu, X.Q. Zong, Y. Zhang, Fabrication of polypyrrole/Zn2SnO4 nanofilm for ultra-highly sensitive ammonia sensing application. Sens. Actuators B 274, 475–586 (2018)

    Article  Google Scholar 

  16. Z.Y. Wang, A. Sackmann, S. Gao, U. Weimar, G.Y. Lu, S. Liu, T. Zhang, N. Barsan, Study on highly selective sensing behavior of ppb-level oxidizing gas sensors based on Zn2SnO4 nanoparticles immobilized on reduced graphene oxide under humidity conditions. Sens. Actuators B 285, 590–600 (2019)

    Article  CAS  Google Scholar 

  17. X.R. Rong, D.L. Chen, G.P. Qu, T. Li, R. Zhang, J. Sun, Effects of graphene on the microstructures of SnO2@rGO nanocomposites and their formaldehyde-sensing performance. Sens. Actuators B 269, 223–237 (2018)

    Article  CAS  Google Scholar 

  18. D.Z. Zhang, Z.Y. Xu, Z.M. Yang, X.S. Song, High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator. Nano Energy 67, 104251 (2020)

    Article  CAS  Google Scholar 

  19. Z.Y. Wang, C. Zhao, T.Y. Han, Y. Zhang, S. Liu, T. Fei, G.Y. Lu, T. Zhang, High-performance reduced graphene oxide-based room-temperature NO2 sensors: a combined surface modification of SnO2 nanoparticles and nitrogen doping approach. Sens. Actuators B 242, 269–279 (2017)

    Article  CAS  Google Scholar 

  20. D. Ziegler, A. Marchisio, P. Palmero, D. Pugliese, V. Cauda, J.M. Tulliani, ZnO thick films for NO2 detection: effect of different nanostructures on the sensors’ performances. J. Mater. Sci. Mater. Electron. 30, 20958–20969 (2019)

    Article  CAS  Google Scholar 

  21. D.Z. Zhang, C.X. Jiang, J.J. Liu, Y.H. Cao, Carbon monoxide gas sensing at room temperature using copper oxide-decorated graphene hybrid nanocomposite prepared by layer-by-layer self-assembly. Sens. Actuators B 247, 875–882 (2017)

    Article  CAS  Google Scholar 

  22. Y.W. Li, N. Luo, G. Sun, B. Zhang, L. Lin, H.H. Jin, Y. Wang, H. Bala, J.L. Cao, Z.Y. Zhang, In situ decoration of Zn2SnO4 nanoparticles on reduced graphene oxide for high performance ethanol sensor. Ceram. Int. 44, 6836–6842 (2018)

    Article  CAS  Google Scholar 

  23. F. Liu, X.F. Chu, Y.P. Dong, W.B. Zhang, W.Q. Sun, Acetone gas sensors based on graphene-ZnFe2O4 composite prepared by solvothermal method. Sens. Actuators B 188, 469–474 (2013)

    Article  CAS  Google Scholar 

  24. Y. Yan, J.Y. Liu, Q. Liu, J. Yu, R.R. Chen, H.S. Zhang, D.L. Song, P.P. Yang, M.L. Zhang, J. Wang, Ag-modified hexagonal nanoflakes-textured hollow octahedron Zn2SnO4 with enhanced sensing properties for triethylamine. J. Alloys Compd. 823, 153724 (2020)

    Article  CAS  Google Scholar 

  25. X.L. Yang, H.Y. Gao, L.P. Zhao, T.S. Wang, P. Sun, F.M. Liu, G.Y. Lu, Enhanced gas sensing properties of monodisperse Zn2SnO4 octahedron functionalized by PdO nanoparticals. Sens. Actuators B 266, 302–310 (2018)

    Article  CAS  Google Scholar 

  26. M. Masjedi-Arani, M. Salavati-Niasari, Simple size-controlled fabrication of Zn2SnO4 nanostructures and study of their behavior in dye sensitized solar cells. Int. J. Hydrogen Energy 42, 858–866 (2017)

    Article  CAS  Google Scholar 

  27. N.V. Toan, C.M. Hung, N.V. Duy, N.D. Hoa, D.T. ThanhLe, N.V. Hieu, Bilayer SnO2–WO3 nanofilms for enhanced NH3 gas sensing performance. Sens. Actuators B 224, 163–170 (2017)

    Google Scholar 

  28. H.I. Chen, C.Y. Chi, W.C. Chen, I.P. Liu, C.H. Chang, T.C. Chou, W.C. Liu, Ammonia sensing characteristic of a Pt nanoparticle/aluminum-doped zinc oxide sensor. Sens. Actuators B 267, 145–154 (2018)

    Article  CAS  Google Scholar 

  29. G.R. Sankar, M.G. Kumar, R. Elayaraja, E. Durgadevi, M. Navaneethan, S. Ponnusamy, K. Tsuchiya, C. Muthanmizhchelvan, Y. Hayakawa, ZnO hierarchical 3D-flower like architectures and their gas sensing properties at room temperature. Appl. Surf. Sci. 449, 314–321 (2018)

    Article  Google Scholar 

  30. Y. Chen, W. Zhang, Q.S. Wu, A highly sensitive room-temperature sensing material for NH3: SnO2-nanorods coupled by rGO. Sens. Actuators B 242, 1216–1226 (2017)

    Article  CAS  Google Scholar 

  31. Y. Xiong, W.W. Xu, D.G. Ding, W.B. Lu, L. Zhu, Z.Y. Zhu, Y. Wang, Q.Z. Xue, J. Hazard. Mater. 341, 159–167 (2018)

    Article  Google Scholar 

  32. D.D. Trung, N.D. Cuong, K.Q. Trung, T.D. Nguyen, N.V. Toan, C.M. Hung, N.V. Hieu, Controlled synthesis of manganese tungstate nanorods for highly selective NH3 gas sensor. J. Alloys Compd 735, 787–794 (2018)

    Article  CAS  Google Scholar 

  33. D.M. An, Q. Wang, X.Q. Tong, Q.J. Zhou, Z.P. Li, Y.L. Zou, X.X. Lian, Y. Li, Synthesis of Zn2SnO4 via a co-precipitation method and its gas-sensing property toward ethanol. Sens. Actuators B 213, 155–163 (2015)

    Article  CAS  Google Scholar 

  34. X. Liu, N. Chen, B.Q. Han, X.C. Xiao, G. Chen, I. Djerdj, Y.D. Wang, Nanoparticle cluster gas sensor: Pt activated SnO2 nanoparticles for NH3 detection with ultrahigh sensitivity. Nanoscale 7, 14872–14880 (2015)

    Article  CAS  Google Scholar 

  35. X.W. Wang, L.K. Gong, D.Z. Zhang, X.X. Fan, Y.B. Jin, L. Guo, Room temperature ammonia gas sensor based on polyaniline/copper ferrite binary nanocomposites. Sens. Actuators B 322, 128615 (2020)

    Article  CAS  Google Scholar 

  36. V. Janakiraman, V. Tamilnayagam, R.S. Sundararajan, S. Suresh, C.S. Biju, Structural and optical properties of pure SnO2 and V2O5/SnO2 nanocomposite thin films for gas sensing application. J. Mater. Sci. Mater. Electron. 31, 15477–15488 (2020)

    Article  CAS  Google Scholar 

  37. Z.G. Xue, Z.X. Cheng, J. Xu, Q. Xiang, X.H. Wang, J.Q. Xu, Controllable evolution of dual defect Zn-i and V-o associate-rich ZnO nanodishes with (0001) exposed facet and its multiple sensitization effect for ethanol detection. ACS Appl. Mater. Interfaces 9, 41559–41567 (2017)

    Article  CAS  Google Scholar 

  38. D.Z. Zhang, N.L. Yin, B.K. Xia, Facile fabrication of ZnO nanocrystalline-modified graphene hybrid nanocomposite toward methane gas sensing application. J. Mater. Sci. Mater. Electron. 26, 5937–5945 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Program of Distinguished Young Scholars, Natural Science Foundation of Chongqing, China (No. cstc2020jcyj-jq0037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Zhang or Dongzhi Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Chen, G., Wang, H. et al. High-performance ammonia gas sensor based on bimetallic oxide Zn2SnO4 decorated with reduced graphene oxide. J Mater Sci: Mater Electron 32, 20139–20148 (2021). https://doi.org/10.1007/s10854-021-06483-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06483-4

Navigation