Abstract
Nano ZnMn2−xCrxO4 samples (x = 0, 0.05, 0.15, 0.2) were synthesized by the sol–gel procedure. The synchrotron X-ray diffraction technique was used to investigate the developed phases, cation distributions of different ions between different sites, lattice parameters, and crystallite size upon increasing the amount of Cr doping in nano ZnMn2O4. X-ray photoelectron spectroscopy (XPS) was utilized to explore the cation oxidation state and the elemental composition of the samples. The valence state of the incorporated chromium is determined to be Cr3+ only. The effect of Cr doping, frequency, and temperature on the dielectric constant, dielectric loss, ac conductivity, complex impedance, and modulus was studied in detail. At a low temperature range, the samples exhibited a semiconductor feature, while at a higher temperature range, the samples revealed metallic behavior. Also, the conduction-type mechanism for each doped sample was determined. The activation energy was affected by the amount of Cr doping. A sample with 15% Cr doping has the highest conductivity among the other samples. Also, the effect of doping and temperature on the Nyquist diagram was examined.
This is a preview of subscription content, access via your institution.










References
R. Gherbi, Y. Bessekhouad, M. Trari, J. Phys. Chem. Solids 89, 69 (2016)
Y. Bessekhouad, M. Trari, Int. J. Hydrog. Energy 27, 357 (2002)
S. Åsbrink, A. Wáskowska, L. Gerward, J.S. Olsen, E. Talik, Phys. Rev. B 60, 12651 (1999)
A. Meenakshisundaram, N. Gunasekaran, V. Srinivaran, Phys. Status Solidi 69, k15 (1982)
A.S. Basaleh, R.M. Mohamed, Appl. Nanosci. 10, 3865 (2020)
Z.K. Heiba, M.M. Ghannam, M.M.S. Sanad, A.A. Albassam, M.B. Mohamed, J. Mater. Sci. Mater. Electron. 31(11), 8946 (2020)
D. Gourier, A. Bessière, S.K. Sharma, L. Binet, B. Viana, N. Basavaraju, K.R. Priolkar, J. Phys. Chem. Solids 75, 826 (2014)
I. Bibi, U. Ali, S. Kamal, S. Ata, S.M. Ibrahim, F. Majid, Z. Nazeer, F. Rehman, S. Iqbal, M. Iqbal, J. Mater. Sci. Technol. 9(6), 12031 (2020)
S. Nasir, M. Anis-ur-Rehman, M.A. Malik, Phys. Scr. 83, 025602 (2011)
S. Saha, B. Das, N. Mazumder, J. Sol–Gel Sci. Technol. 61, 518 (2012)
R. Jayaprakash, M. Seehra, T. Prakash, S. Kumar, J. Phys. Chem. Solids 74, 943 (2013)
M. Kamran, W. Shoukat, K. Nadeem, S. Salman Hussain, F. Zeb, S. Hussain, Mater. Res. Express 6, 076106 (2019)
K. Khan, Z. Iqba, H. Abbas, A. Hassan, K. Nadeem, J. Mater. Sci. Mater. Electron. 31, 8578 (2020)
M.M. Ghannam, Z.K. Heiba, M.M.S. Sanad, M.B. Mohamed, Appl. Phys. A 126(5), 1 (2020)
L. Lutterotti, Nucl. Instrum. Methods Phys. Res. B 268, 334 (2010)
J. Rodríguez-Carvajal, Physica B (Amst. Neth.) 192, 55 (1993)
X. Juan, H. Hua, L. Hanxing, Y. Zhonghua, S. Zhe, Z. Lin, X. Qi, D. Jinqiang, C. Minghe, Ceram. Int. 42, 12796 (2016)
P.C. Sati, M. Kumar, S. Chhoker, Ceram. Int. 41, 3227 (2015)
A.K. Jonscher, Universal Relaxation Law (Chelsea Dielectrics Press, London, 1996)
Z.K. Heiba, N.G. Imam, M.B. Mohamed, J. Mol. Struct. 1095, 61 (2015)
R. Gherbi, Y. Bessekhouad, M. Trari, J. Alloys Compd. 655, 188–197 (2016)
M.C. Biesinger et al., Appl. Surf. Sci. 257, 2717–2730 (2011)
Y. Lin, W. Cai, X. Tian, Mater. Chem. 21, 991 (2011)
X. Zeng, L. Shi, L. Li, J. Yang, X. Cheng, M. Gao, RSC Adv. 5, 70379 (2015)
K.W. Wagner, Ann. Phys. 40, 817 (1973)
C.G. Koops, Phys. Rev. 83, 121 (1951)
M. Rostami, M.H. Majles Ara, Ceram. Int. 45(6), 7606 (2019)
M. Lakshmi, K. Vijaya Kumar, K. Thyagarajan, Adv. Mater. Phys. Chem. 6, 141 (2016)
M. Ashtara, A. Munirb, M. Anis-ur-Rehmanb, A. Maqsood, Mater. Res. Bull. 79, 14 (2016)
M. Junaid, M.A. Khan, F. Iqbal, G. Murtaza, M.N. Akhtar, M. Ahmad, M.F. Warsi, J. Magn. Magn. Mater. 419(3), 338 (2016)
P. Binu, S. Thankachan, S. Xavier, E.M. Mohammed, J. Alloys Compd. 578, 314 (2013)
S.A. Saafan, S.T. Assar, J. Magn. Magn. Mater. 324, 2989 (2012)
M. Fayek, M. Mostafa, F. Sayedahmed, S. Ata-Allah, M. Kaiser, J. Magn. Magn. Mater. 210, 189 (2000)
S.S. Ata-Allah, M. Kaiser, Phys. Status Solidi 242, 1324 (2005)
A.R. Long, Adv. Phys. 31, 553 (1982)
S. Hcini, A. Omri, M.L. Bouazizi, A. Dhahri, K. Touileb, J. Mater. Sci. Mater. Electron. 8674, 18 (2018)
H.F. Cheng, J. Appl. Phys. 56(6), 1831 (1984)
A. Omri, E. Dhahri, B.F.O. Costa, M.A. Valente, J. Magn. Magn. Mater. 499, 166243 (2020)
X. Wang, Q. Hu, G. Zang, C. Zhang, L. Li, Mater. Chem. Phys. 195, 157 (2017)
Acknowledgements
The authors acknowledge Taif University Researchers Supporting Project number (TURSP-2020/249), Taif University, Taif, Saudi Arabia.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Heiba, Z.K., Mohamed, M.B., Ghannam, M.M. et al. Structural and dielectric correlation in nano ZnMn2−xCrxO4. J Mater Sci: Mater Electron 32, 19529–19542 (2021). https://doi.org/10.1007/s10854-021-06472-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-021-06472-7