Skip to main content
Log in

A roadmap towards stable perovskite solar cells: prospective on substitution of organic (A) & inorganic (B) cations

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In recent years, the organic-inorganic hybrid perovskite solar cells (PSCs) have emerged as promising, fastest growing technology and achieved power conversion efficiency (PCE) as high as 25.5%. These hybrid PSCs exhibit many attractive properties such as long diffusion length, efficient charge transport, low temperature processing, tunable bandgap, and low-cost fabrication. The most conventional hybrid perovskite materials having the structure formula ABX3, where A = MA/FA (organic cation), B = Pb2+ (inorganic cation), X = I/Cl/Br (halide anion) are very hygroscopic due to the presence of organic cation and toxic due to Pb content. For large scale use, the lead (Pb) toxicity could have deteriorating effects on the human race and the environment. Besides this, owing to the hygroscopic nature, the PSCs degrade very rapidly in humid conditions. Efforts have been reported to replace lead and organic cations from the perovskite compounds with suitable alternatives to manage the toxicity and stability. It has been found that the mixture of Pb and Sn could be more effective in terms of efficiency and toxicity. In other case, partial or complete replacement of organic moiety from the perovskite layer by inorganic cations such as cesium (Cs), rubidium (Rb) could lead to better thermal and moisture stability. The other materials such as Spiro OMeTAD, PEDOT: PSS, PTAA, used as hole transport layer (HTL) are quite expensive and degradable in ambient conditions. The suitable choice of inorganic HTLs in this regard would result in better stabilization of PSCs. All-inorganic PSCs is a way to improve the device performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B. Parida, S. Iniyan, R. Goic, A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev. 15(3), 1625–1636 (2011)

    Article  CAS  Google Scholar 

  2. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013)

    Article  CAS  Google Scholar 

  3. G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, T.C. Sum, Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342(6156), 344–347 (2013)

    Article  CAS  Google Scholar 

  4. H.J. Snaith, Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. Phys. Chem. Lett. 4(21), 3623–3630 (2013)

    Article  CAS  Google Scholar 

  5. P. Gao, M. Grätzel, M.K. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7(8), 2448–2463 (2014)

    Article  CAS  Google Scholar 

  6. T.B. Song, Q. Chen, H. Zhou, C. Jiang, H.H. Wang, Y.M. Yang, Y. Yang, Perovskite solar cells: film formation and properties. J.  Mater. Chem.  A 3(17), 9032–9050 (2015)

    Article  CAS  Google Scholar 

  7. A. Goetzberger, C. Hebling, Photovoltaic materials, past, present, future. Sol. Energy Mater. Sol. Cells 62(1–2), 1–19 (2000)

    Article  CAS  Google Scholar 

  8. G. Flora, D. Gupta, A. Tiwari, Toxicity of lead: a review with recent updates. Interdisciplinary Toxicology 5(2), 47–58 (2012)

    Article  CAS  Google Scholar 

  9. A. Babayigit, A. Ethirajan, M. Muller, B. Conings, Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15(3), 247–251 (2016)

    Article  CAS  Google Scholar 

  10. A. Abate, Perovskite solar cells go lead free. Joule 1(4), 659–664 (2017)

    Article  CAS  Google Scholar 

  11. R.D. Shannon (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica SectionA 32(5): 751–767

  12. F. Giustino, H.J. Snaith, Toward lead-free perovskite solar cells. ACS Energy Letters 1(6), 1233–1240 (2016)

    Article  CAS  Google Scholar 

  13. Z. Xiao, Z. Song, Y. Yan, From Lead halide Perovskites to Lead-free metal halide Perovskites and Perovskite derivatives. Adv. Mater. 31(47), 1803792 (2019)

    Article  CAS  Google Scholar 

  14. F. Hao, C.C. Stoumpos, D.H. Cao, R.P. Chang, M.G. Kanatzidis, Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8(6), 489–494 (2014)

    Article  CAS  Google Scholar 

  15. S. Gupta, T. Bendikov, G. Hodes, D. Cahen, CsSnBr3, a lead-free halide perovskite for long-term solar cell application: insights on SnF2 addition. ACS Energy Lett. 1(5), 1028–1033 (2016)

    Article  CAS  Google Scholar 

  16. W. Ke, P. Priyanka, S. Vegiraju, C.C. Stoumpos, I. Spanopoulos, C.M.M. Soe, M.G. Kanatzidis, Dopant-free tetrakis-triphenylamine hole transporting material for efficient tin-based perovskite solar cells. J. Am. Chem. Soc. 140(1), 388–393 (2018)

    Article  CAS  Google Scholar 

  17. T.M. Koh, T. Krishnamoorthy, N. Yantara, C. Shi, W.L. Leong, P.P. Boix, N. Mathews, Formamidinium tin-based perovskite with low Eg for photovoltaic applications. J. Mater. Chem. A 3(29), 14996–15000 (2015)

    Article  CAS  Google Scholar 

  18. W. Liao, D. Zhao, Y. Yu, C.R. Grice, C. Wang, A.J. Cimaroli, Y. Yan, Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22 %. Adv. Mater. 28(42), 9333–9340 (2016)

    Article  CAS  Google Scholar 

  19. K. Patel, Solar Panel Efficiency and lifespan, http://solarenergyforus.com

  20. H. Zhou, Y. Shi, Q. Dong, H. Zhang, Y. Xing, K. Wang, T. Ma, Hole-conductor-free, metal-electrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode. Phys. Chem. Lett. 5(18), 3241–3246 (2014)

    Article  CAS  Google Scholar 

  21. Y. Rong, L. Liu, A. Mei, X. Li, H. Han, Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells. Adv. Energy Mater. 5(20), 1501066 (2015)

    Article  CAS  Google Scholar 

  22. G. Niu, X. Guo, L. Wang, Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3(17), 8970–8980 (2015)

    Article  CAS  Google Scholar 

  23. T.A. Berhe, W.N. Su, C.H. Chen, C.J. Pan, J.H. Cheng, H.M. Chen, B.J. Hwang, Organometal halide perovskite solar cells: degradation and stability. Energy Environ. Sci. 9(2), 323–356 (2016)

    Article  CAS  Google Scholar 

  24. B. Li, Y. Li, C. Zheng, D. Gao, W. Huang, Advancements in the stability of perovskite solar cells: degradation mechanisms and improvement approaches. RSC Advances 6(44), 38079–38091 (2016)

    Article  CAS  Google Scholar 

  25. N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.A. Haghighirad, H.J. Snaith, Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7(9), 3061–3068 (2014)

    Article  CAS  Google Scholar 

  26. T.B. Song, T. Yokoyama, C.C. Stoumpos, J. Logsdon, D.H. Cao, M.R. Wasielewski, M.G. Kanatzidis, Importance of reducing vapor atmosphere in the fabrication of tin-based perovskite solar cells. J.  Am. Chem. Soc. 139(2), 836–842 (2017)

    Article  CAS  Google Scholar 

  27. T.B. Song, T. Yokoyama, S. Aramaki, M.G. Kanatzidis, Performance enhancement of lead-free tin-based perovskite solar cells with reducing atmosphere-assisted dispersible additive. ACS Energy Letters 2(4), 897–903 (2017)

    Article  CAS  Google Scholar 

  28. I. Kopacic, B. Friesenbichler, S.F. Hoefler, B. Kunert, H. Plank, T. Rath, G. Trimmel, Enhanced performance of germanium halide perovskite solar cells through compositional engineering. ACS Appl. Energy Mater. 1(2), 343–347 (2018)

    Article  CAS  Google Scholar 

  29. T. Krishnamoorthy, H. Ding, C. Yan, W.L. Leong, T. Baikie, Z. Zhang, S.G. Mhaisalkar, Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A 3(47), 23829–23832 (2015)

    Article  CAS  Google Scholar 

  30. J. Liang, P. Zhao, C. Wang, Y. Wang, Y. Hu, G. Zhu, Z. Jin, CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability. J. Am. Chem. Soc. 139(40), 14009–14012 (2017)

    Article  CAS  Google Scholar 

  31. J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, J. Liu, All-inorganic perovskite solar cells. J. Am. Chem. Soc. 138(49), 15829–15832 (2016)

    Article  CAS  Google Scholar 

  32. F. Bella, P. Renzi, C. Cavallo, C. Gerbaldi, Caesium for perovskite solar cells: an overview. Chemistry–A European Journal 24(47), 12183–12205 (2018)

    Article  CAS  Google Scholar 

  33. G.E. Eperon, G.M. Paternò, R.J. Sutton, A. Zampetti, A.A. Haghighirad, F. Cacialli, H.J. Snaith, Inorganic caesium lead iodide perovskite solar cells. J Mater. Chem.  A 3(39), 19688–19695 (2015)

    Article  CAS  Google Scholar 

  34. I. Mora-Seró, How do perovskite solar cells work? Joule 2(4), 585–587 (2018)

    Article  Google Scholar 

  35. S. Ravishankar, S. Gharibzadeh, C. Roldán-Carmona, G. Grancini, Y. Lee, M. Ralaiarisoa, M.K. Nazeeruddin, Influence of charge transport layers on open-circuit voltage and hysteresis in perovskite solar cells. Joule 2(4), 788–798 (2018)

    Article  CAS  Google Scholar 

  36. C. Li, K.C.K. Soh, P. Wu, Formability of ABO3 perovskites. J. Alloy. Compd. 372(1–2), 40–48 (2004)

    Article  CAS  Google Scholar 

  37. Z. Fan, K. Sun, J. Wang, Perovskites for photovoltaics: a combined review of organic–inorganic halide perovskites and ferroelectric oxide perovskites. J.  Mater. Chem. A 3(37), 18809–18828 (2015)

    Article  CAS  Google Scholar 

  38. N.K. Elumalai, M.A. Mahmud, D. Wang, A. Uddin, Perovskite solar cells: progress and advancements. Energies 9(11), 861 (2016)

    Article  CAS  Google Scholar 

  39. C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, Z. Guo, Formability of ABX3 (X = F, Cl, Br, I) Halide Perovskites. Acta Crystallogr., Sect. B: Struct. Sci 64(6), 702–707 (2008)

    Article  CAS  Google Scholar 

  40. S.F. Hoefler, G. Trimmel, T. Rath, Progress on lead-free metal halide perovskites for photovoltaic applications: a review. Monatshefte für Chemie-Chemical Monthly 148(5), 795–826 (2017)

    Article  CAS  Google Scholar 

  41. S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, Y.M. Lam, The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 7(1), 399–407 (2014)

    Article  CAS  Google Scholar 

  42. A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J.T.W. Wang, S.D. Stranks, R.J. Nicholas, Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys. 11(7), 582–587 (2015)

    Article  CAS  Google Scholar 

  43. A.M. Askar, K. Shankar, Exciton binding energy in organic–inorganic tri-halide perovskites. J. Nanosci. Nanotechnol. 16(6), 5890–5901 (2016)

    Article  CAS  Google Scholar 

  44. B. Maynard, Q. Long, E.A. Schiff, M. Yang, K. Zhu, R. Kottokkaran, V.L. Dalal, Electron and hole drift mobility measurements on methylammonium lead iodide perovskite solar cells. Appl. Phys. Lett. 108(17), 173505 (2016)

    Article  CAS  Google Scholar 

  45. M. Pazoki, T. Edvinsson, Metal replacement in perovskite solar cell materials: chemical bonding effects and optoelectronic properties. Sustainable Energy & Fuels 2(7), 1430–1445 (2018)

    Article  CAS  Google Scholar 

  46. D. Liu, J. Yang, T.L. Kelly, Compact layer free perovskite solar cells with 13.5 % efficiency. J. Am. Chem. Soc. 136(49), 17116–17122 (2014)

    Article  CAS  Google Scholar 

  47. K.W. Tsai, C.C. Chueh, S.T. Williams, T.C. Wen, A.K. Jen, High-performance hole-transporting layer-free conventional perovskite/fullerene heterojunction thin-film solar cells. Journal of Materials Chemistry A 3(17), 9128–9132 (2015)

    Article  CAS  Google Scholar 

  48. U. Krishnan, M. Kaur, M. Kumar, A. Kumar, Factors affecting the stability of perovskite solar cells: a comprehensive review. J. Photonics Energy 9(2), 021001 (2019)

    CAS  Google Scholar 

  49. J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13(4), 1764–1769 (2013)

    Article  CAS  Google Scholar 

  50. G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7(3), 982–988 (2014)

    Article  CAS  Google Scholar 

  51. L. Atourki, E. Vega, M. Mollar, B. Marí, H. Kirou, K. Bouabid, A. Ihlal, Impact of iodide substitution on the physical properties and stability of cesium lead halide perovskite thin films CsPbBr3 – XIX(0 ≤ X ≤ 1). J. Alloy. Compd. 702, 404–409 (2017)

    Article  CAS  Google Scholar 

  52. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    Article  CAS  Google Scholar 

  53. H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, N.G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9 %. Sci. Rep. 2(1), 1–7 (2012)

    Article  Google Scholar 

  54. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013)

    Article  CAS  Google Scholar 

  55. G. Niu, W. Li, F. Meng, L. Wang, H. Dong, Y. Qiu, Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2(3), 705–710 (2014)

    Article  CAS  Google Scholar 

  56. M.R. Leyden, L.K. Ono, S.R. Raga, Y. Kato, S. Wang, Y. Qi, High performance perovskite solar cells by hybrid chemical vapor deposition. Journal of Materials Chemistry A 2(44), 18742–18745 (2014)

    Article  CAS  Google Scholar 

  57. J.H. Heo, H.J. Han, D. Kim, T.K. Ahn, S.H. Im, Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1 % power conversion efficiency. Energy Environ. Sci. 8(5), 1602–1608 (2015)

    Article  CAS  Google Scholar 

  58. S. Wozny, M. Yang, A.M. Nardes, C.C. Mercado, S. Ferrere, M.O. Reese, K. Zhu, Controlled humidity study on the formation of higher efficiency formamidinium lead triiodide-based solar cells. Chem. Mater. 27(13), 4814–4820 (2015)

    Article  CAS  Google Scholar 

  59. J.W. Lee, D.H. Kim, H.S. Kim, S.W. Seo, S.M. Cho, N.G. Park, Formamidinium and cesium hybridization for photo-and moisture‐stable perovskite solar cell. Adv Energy Mater 5(20), 1501310 (2015)

    Article  CAS  Google Scholar 

  60. Koushik, D., Verhees, W. J., Kuang, Y., Veenstra, S., Zhang, D., Verheijen, M. A.,… Schropp, R. E. (2017). High-efficiency humidity-stable planar perovskite solar cells based on atomic layer architecture. Energy & Environmental Science, 10(1), 91–100

  61. R.J. Sutton, G.E. Eperon, L. Miranda, E.S. Parrott, B.A. Kamino, J.B. Patel, H.J. Snaith, Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Advanced Energy Materials 6(8), 1502458 (2016)

    Article  CAS  Google Scholar 

  62. M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena, M.K. Nazeeruddin, M. Grätzel, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9(6), 1989–1997 (2016)

    Article  CAS  Google Scholar 

  63. M. Saliba, T. Matsui, K. Domanski, J.Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, M. Grätzel, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354(6309), 206–209 (2016)

    Article  CAS  Google Scholar 

  64. C.Y. Chen, H.Y. Lin, K.M. Chiang, W.L. Tsai, Y.C. Huang, C.S. Tsao, H.W. Lin, All-Vacuum‐Deposited Stoichiometrically Balanced Inorganic Cesium Lead Halide Perovskite Solar Cells with Stabilized Efficiency Exceeding 11 %. Adv. Mater. 29(12), 1605290 (2017)

    Article  CAS  Google Scholar 

  65. J.K. Nam, S.U. Chai, W. Cha, Y.J. Choi, W. Kim, M.S. Jung, J.H. Park, Potassium incorporation for enhanced performance and stability of fully inorganic cesium lead halide perovskite solar cells. Nano Lett. 17(3), 2028–2033 (2017)

    Article  CAS  Google Scholar 

  66. Y. Wu, F. Xie, H. Chen, X. Yang, H. Su, M. Cai, L. Han, Thermally stable MAPbI3 perovskite solar cells with efficiency of 19.19 % and area over 1 cm2 achieved by additive engineering. Advanced materials 29(28), 1701073 (2017)

    Article  CAS  Google Scholar 

  67. Yan L, Xue Q, Liu M, Zhu Z, Tian J, Li Z, Cao Y (2018) Interface engineering for all-inorganic CsPbI2Br perovskite solar cells with efficiency over 14 %. Advanced materials, 30(33): 1802509

  68. Yin, G., Zhao, H., Jiang, H., Yuan, S., Niu, T., Zhao, K.,  Liu, S. (2018). Precursor Engineering for All-Inorganic CsPbI2Br Perovskite Solar Cells with 14.78 % Efficiency. Adv. Func. Mater. 28(39): 1803269

  69. Wang, P., Zhang, X., Zhou, Y., Jiang, Q., Ye, Q., Chu, Z.,  You, J. (2018) Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nature communications 9(1), 1–7

  70. Wang, K., Jin, Z., Liang, L., Bian, H., Wang, H., Feng, J.,  Liu, S. F. (2019) Chlorine doping for black γ-CsPbI3 solar cells with stabilized efficiency beyond 16 %. Nano energy, 58: 175–182

  71. Wu, T., Wang, Y., Dai, Z., Cui, D., Wang, T., Meng, X., Han, L. (2019) Efficient and stable CsPbI3 solar cells via regulating lattice distortion with surface organic terminal groups. Advanced materials, 31(24): 1900605

  72. N. Arora, M.I. Dar, A. Hinderhofer, N. Pellet, F. Schreiber, S.M. Zakeeruddin, M. Grätzel, Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20 %. Science 358 (6364), 768–771 (2017)

    Article  CAS  Google Scholar 

  73. E. Nouri, M.R. Mohammadi, P. Lianos, Improving the stability of inverted perovskite solar cells under ambient conditions with graphene-based inorganic charge transporting layers. Carbon 126, 208–214 (2018)

    Article  CAS  Google Scholar 

  74. Chen, Y., Yang, Z., Wang, S., Zheng, X., Wu, Y., Yuan, N.,  Liu, S. (2018). Design of an Inorganic Mesoporous Hole-Transporting Layer for Highly Efficient and Stable Inverted Perovskite Solar Cells. Advanced Materials, 30(52), 1805660

  75. S. Seo, S. Jeong, C. Bae, N.G. Park, H. Shin, Perovskite Solar Cells with Inorganic Electron-and Hole‐Transport Layers Exhibiting Long‐Term (≈ 500 h) Stability at 85° C under Continuous 1 Sun Illumination in Ambient Air. Adv. Mater. 30(29), 1801010 (2018)

    Article  CAS  Google Scholar 

  76. Ye, Q., Zhao, Y., Mu, S., Ma, F., Gao, F., Chu, Z., You, J. (2019). Cesium lead inorganic solar cell with efficiency beyond 18 % via reduced charge recombination.Advanced materials, 31(49), 1905143

  77. L. Fu, Y. Nie, B. Li, N. Li, B. Cao, L. Yin, Bismuth Telluride Interlayer for All-Inorganic Perovskite Solar Cells with Enhanced Efficiency and Stability. Solar Rrl 3(12), 1900233 (2019)

    Article  CAS  Google Scholar 

  78. L. Su, Y. Xiao, L. Lu, G. Han, M. Zhu, Enhanced stability and solar cell performance via π-conjugated Lewis base passivation of organic inorganic lead halide perovskites. Org. Electron. 77, 105519 (2020)

    Article  CAS  Google Scholar 

  79. Y. Zheng, X. Yang, R. Su, P. Wu, Q. Gong, R. Zhu, High-Performance CsPbIxBr3‐x All‐Inorganic Perovskite Solar Cells with Efficiency over 18 % via Spontaneous Interfacial Manipulation. Adv. Func. Mater. 30(46), 2000457 (2020)

    Article  CAS  Google Scholar 

  80. G.E. Eperon, K.H. Stone, L.E. Mundt, T.H. Schloemer, S.N. Habisreutinger, S.P. Dunfield, D.T. Moore, The role of dimethylammonium in bandgap modulation for stable halide perovskites. ACS Energy Letters 5(6), 1856–1864 (2020)

    Article  CAS  Google Scholar 

  81. M. Konstantakou, T. Stergiopoulos, A critical review on tin halide perovskite solar cells. Journal of Materials Chemistry A 5(23), 11518–11549 (2017)

    Article  CAS  Google Scholar 

  82. Y. Takahashi, H. Hasegawa, Y. Takahashi, T. Inabe, Hall mobility in tin iodide perovskite CH3NH3SnI3: evidence for a doped semiconductor. J. Solid State Chem. 205, 39–43 (2013)

    Article  CAS  Google Scholar 

  83. Y. Takahashi, R. Obara, Z.Z. Lin, Y. Takahashi, T. Naito, T. Inabe, K. Terakura, Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity. Dalton Trans. 40(20), 5563–5568 (2011)

    Article  CAS  Google Scholar 

  84. B. Lee, J. He, R.P. Chang, M.G. Kanatzidis, All-solid-state dye-sensitized solar cells with high efficiency. Nature 485(7399), 486–489 (2012)

    Article  CAS  Google Scholar 

  85. M.H. Kumar, S. Dharani, W.L. Leong, P.P. Boix, R.R. Prabhakar, T. Baikie, N. Mathews, Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 26(41), 7122–7127 (2014)

    Article  CAS  Google Scholar 

  86. S.J. Lee, S.S. Shin, Y.C. Kim, D. Kim, T.K. Ahn, J.H. Noh, S.I. Seok, Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2–pyrazine complex. Journal of American Chemical Society 138(12), 3974–3977 (2016)

    Article  CAS  Google Scholar 

  87. S. Gupta, T. Bendikov, G. Hodes, D. Cahen, CsSnBr3, a lead-free halide perovskite for long-term solar cell application: insights on SnF2 addition. ACS Energy Letters 1(5), 1028–1033 (2016)

    Article  CAS  Google Scholar 

  88. T.B. Song, T. Yokoyama, C.C. Stoumpos, J. Logsdon, D.H. Cao, M.R. Wasielewski, M.G. Kanatzidis, Importance of reducing vapor atmosphere in the fabrication of tin-based perovskite solar cells. Journal of American Chemical Society 139(2), 836–842 (2017)

    Article  CAS  Google Scholar 

  89. K.P. Marshall, M. Walker, R.I. Walton, R.A. Hatton, Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nature Energy 1(12), 1–9 (2016)

    Article  CAS  Google Scholar 

  90. L.J. Chen, C.R. Lee, Y.J. Chuang, Z.H. Wu, C. Chen, Synthesis and optical properties of lead-free cesium tin halide perovskite quantum rods with high-performance solar cell application. Physical Chemistry Letters 7(24), 5028–5035 (2016)

    Article  CAS  Google Scholar 

  91. W. Ke, P. Priyanka, S. Vegiraju, C.C. Stoumpos, I. Spanopoulos, C.M.M. Soe, M.G. Kanatzidis, Dopant-free tetrakis-triphenylamine hole transporting material for efficient tin-based perovskite solar cells. Journal of American Chemical Society 140(1), 388–393 (2018)

    Article  CAS  Google Scholar 

  92. Z. Zhao, F. Gu, Y. Li, W. Sun, S. Ye, H. Rao, C. Huang, Mixed-organic‐cation tin iodide for lead‐free perovskite solar cells with an efficiency of 8.12 %. Advanced Science 4(11), 1700204 (2017)

    Article  CAS  Google Scholar 

  93. S. Shao, J. Liu, G. Portale, H.H. Fang, G.R. Blake, G.H. ten Brink, M.A. Loi, Highly reproducible Sn-based hybrid perovskite solar cells with 9 % efficiency. Advanced Energy Materials 8(4), 1702019 (2018)

    Article  CAS  Google Scholar 

  94. Lee, S. J., Shin, S. S., Im, J., Ahn, T. K., Noh, J. H., Jeon, N. J., Seo, J. (2017).Reducing carrier density in formamidinium tin perovskites and its beneficial effects on stability and efficiency of perovskite solar cells. ACS Energy Letters, 3(1), 46–53

  95. J. Liu, M. Ozaki, S. Yakumaru, T. Handa, R. Nishikubo, Y. Kanemitsu, A. Wakamiya, Lead-Free Solar Cells based on Tin Halide Perovskite Films with High Coverage and Improved Aggregation. Angew. Chem. Int. Ed. 57(40), 13221–13225 (2018)

    Article  CAS  Google Scholar 

  96. M.E. Kayesh, K. Matsuishi, R. Kaneko, S. Kazaoui, J.J. Lee, T. Noda, A. Islam, Coadditive engineering with 5-ammonium valeric acid iodide for efficient and stable Sn perovskite solar cells. ACS Energy Letters 4(1), 278–284 (2018)

    Article  CAS  Google Scholar 

  97. Gao, F., Li, C., Qin, L., Zhu, L., Huang, X., Liu, H.,  Teng, F. (2018). Enhanced performance of tin halide perovskite solar cell by addition of lead thiocyanate. RSC advances, 8(25), 14025–14030

  98. J. Cao, Q. Tai, P. You, G. Tang, T. Wang, N. Wang, F. Yan, Enhanced performance of tin-based perovskite solar cells induced by an ammonium hypophosphite additive. Journal of Materials Chemistry A 7(46), 26580–26585 (2019)

    Article  CAS  Google Scholar 

  99. M.A. Kamarudin, D. Hirotani, Z. Wang, K. Hamada, K. Nishimura, Q. Shen, S. Hayase, Suppression of charge carrier recombination in lead-free tin halide perovskite via lewis base post-treatment. J. Phys. Chem. Lett. 10(17), 5277–5283 (2019)

    Article  CAS  Google Scholar 

  100. K. Nishimura, M.A. Kamarudin, D. Hirotani, K. Hamada, Q. Shen, S. Iikubo, S. Hayase, Lead-free tin-halide perovskite solar cells with 13 % efficiency. Nano Energy 74, 104858 (2020)

    Article  CAS  Google Scholar 

  101. Ran, C., Gao, W., Li, J., Xi, J., Li, L., Dai, J.,  Wu, Z. (2019). Conjugated organic cations enable efficient self-healing FASnI3 solar cells. Joule, 3(12), 3072–3087

  102. M. Chen, Q. Dong, F.T. Eickemeyer, Y. Liu, Z. Dai, A.D. Carl, N.P. Padture, High-Performance Lead-Free Solar Cells Based on Tin-Halide Perovskite Thin Films Functionalized by a Divalent Organic Cation. ACS Energy Letters 5(7), 2223–2230 (2020)

    Article  CAS  Google Scholar 

  103. Xu, X., Cao, K., Zhu, W., Gu, W., Ma, B., Qin, M., Huang, W. (2020). Improved Crystallization and Stability of Mixed-Cation Tin Iodide for Lead-Free Perovskite Solar Cells. ACSApplied Energy Materials, 3(6), 5415–5426

  104. T. Wang, Q. Tai, X. Guo, J. Cao, C.K. Liu, N. Wang, F. Yan, Highly air-stable tin-based perovskite solar cells through grain-surface protection by gallic acid. ACS Energy Letters 5(6), 1741–1749 (2020)

    Article  CAS  Google Scholar 

  105. J. Li, J. Huang, A. Zhao, Y. Li, M. Wei, An inorganic stable Sn-based perovskite film with regulated nucleation for solar cell application. Journal of Materials Chemistry C 8(26), 8840–8845 (2020)

    Article  CAS  Google Scholar 

  106. B.B. Yu, M. Liao, Y. Zhu, X. Zhang, Z. Du, Z. Jin, Z. He, Oriented Crystallization of Mixed-Cation Tin Halides for Highly Efficient and Stable Lead‐Free Perovskite Solar Cells. Adv. Func. Mater. 30(24), 2002230 (2020)

    Article  CAS  Google Scholar 

  107. T. Wu, D. Cui, X. Liu, X. Meng, Y. Wang, T. Noda, L. Han, Efficient and Stable Tin Perovskite Solar Cells Enabled by Graded Heterostructure of Light-Absorbing Layer. Solar RRL 4(9), 2000240 (2020)

    Article  CAS  Google Scholar 

  108. X. Liu, Y. Wang, T. Wu, X. He, X. Meng, J. Barbaud, L. Han, Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure. Nature communications 11(1), 1–7 (2020)

    CAS  Google Scholar 

  109. C.C. Stoumpos, L. Frazer, D.J. Clark, Y.S. Kim, S.H. Rhim, A.J. Freeman, M.G. Kanatzidis, Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties. Journal of American Chemical Society 137(21), 6804–6819 (2015)

    Article  CAS  Google Scholar 

  110. Y.Q. Zhao, X. Wang, B. Liu, Z.L. Yu, P.B. He, Q. Wan, H.L. Yu, Geometric structure and photovoltaic properties of mixed halide germanium perovskites from theoretical view. Org. Electron. 53, 50–56 (2018)

    Article  CAS  Google Scholar 

  111. T. Krishnamoorthy, H. Ding, C. Yan, W.L. Leong, T. Baikie, Z. Zhang, S.G. Mhaisalkar, Lead-free germanium iodide perovskite materials for photovoltaic applications. Journal of Materials Chemistry A 3(47), 23829–23832 (2015)

    Article  CAS  Google Scholar 

  112. I. Kopacic, B. Friesenbichler, S.F. Hoefler, B. Kunert, H. Plank, T. Rath, G. Trimmel, Enhanced performance of germanium halide perovskite solar cells through compositional engineering. ACS Applied Energy Materials 1(2), 343–347 (2018)

    Article  CAS  Google Scholar 

  113. N. Ito, M.A. Kamarudin, D. Hirotani, Y. Zhang, Q. Shen, Y. Ogomi, S. Hayase, Mixed Sn–Ge perovskite for enhanced perovskite solar cell performance in air. Physical Chemistry Letters 9(7), 1682–1688 (2018)

    Article  CAS  Google Scholar 

  114. M. Chen, M.G. Ju, H.F. Garces, A.D. Carl, L.K. Ono, Z. Hawash, N.P. Padture, Highly stable and efficient all-inorganic lead-free perovskite solar cells with native-oxide passivation. Nat. Commun. 10(1), 1–8 (2019)

    CAS  Google Scholar 

  115. B.W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, E.M. Johansson, Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application. Adv. Mater. 27(43), 6806–6813 (2015)

    Article  CAS  Google Scholar 

  116. R.L. Hoye, R.E. Brandt, A. Osherov, V. Stevanović, S.D. Stranks, M.W. Wilson, T. Buonassisi, Methylammonium bismuth iodide as a lead-free, stable hybrid organic–inorganic solar absorber. Chemistry–A European Journal 22(8), 2605–2610 (2016)

    Article  CAS  Google Scholar 

  117. T. Singh, A. Kulkarni, M. Ikegami, T. Miyasaka, Effect of electron transporting layer on bismuth-based lead-free perovskite (CH3NH3)3Bi2I9 for photovoltaic applications. ACS Appl. Mater. Interfaces. 8(23), 14542–14547 (2016)

    Article  CAS  Google Scholar 

  118. J. Shin, M. Kim, S. Jung, C.S. Kim, J. Park, A. Song, M. Song, Enhanced efficiency in lead-free bismuth iodide with post treatment based on a hole-conductor-free perovskite solar cell. Nano Research 11(12), 6283–6293 (2018)

    Article  CAS  Google Scholar 

  119. S.M. Jain, D. Phuyal, M.L. Davies, M. Li, B. Philippe, C. De Castro, J.R. Durrant, An effective approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free, (CH3NH3)3Bi2I9 bismuth-based perovskite solar cells for improved performance and long-term stability. Nano Energy 49, 614–624 (2018)

    Article  CAS  Google Scholar 

  120. S.M. Jain, T. Edvinsson, J.R. Durrant, Green fabrication of stable lead-free bismuth based perovskite solar cells using a non-toxic solvent. Communications Chemistry 2(1), 1–7 (2019)

    Article  CAS  Google Scholar 

  121. J.C. Hebig, I. Kuhn, J. Flohre, T. Kirchartz, Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications. ACS Energy Letters 1(1), 309–314 (2016)

    Article  CAS  Google Scholar 

  122. K.M. Boopathi, P. Karuppuswamy, A. Singh, C. Hanmandlu, L. Lin, S.A. Abbas, C.W. Chu, Solution-processable antimony-based light-absorbing materials beyond lead halide perovskites. Journal of Materials Chemistry A 5(39), 20843–20850 (2017)

    Article  CAS  Google Scholar 

  123. F. Jiang, D. Yang, Y. Jiang, T. Liu, X. Zhao, Y. Ming, Y. Zhou, Chlorine-incorporation-induced formation of the layered phase for antimony-based lead-free perovskite solar cells. Journal of American Chemical Society 140(3), 1019–1027 (2018)

    Article  CAS  Google Scholar 

  124. A. Singh, K.M. Boopathi, A. Mohapatra, Y.F. Chen, G. Li, C.W. Chu, Photovoltaic performance of vapor-assisted solution-processed layer polymorph of Cs3Sb2I9. ACS Appl. Mater. Interfaces. 10(3), 2566–2573 (2018)

    Article  CAS  Google Scholar 

  125. S. Chatterjee, A.J. Pal, Tin (IV) substitution in (CH3NH3)3Sb2I9: toward low-band-gap defect-ordered hybrid perovskite solar cells. ACS Appl. Mater. Interfaces. 10(41), 35194–35205 (2018)

    Article  CAS  Google Scholar 

  126. K. Ahmad, P. Kumar, S.M. Mobin, A Two-Step Modified Sequential Deposition Method‐based Pb‐Free (CH3NH3)3Sb2I9 Perovskite with Improved Open Circuit Voltage and Performance. ChemElectroChem 7(4), 946–950 (2020)

    Article  CAS  Google Scholar 

  127. M.G. Ju, M. Chen, Y. Zhou, H.F. Garces, J. Dai, L. Ma, X.C. Zeng, Earth-abundant nontoxic titanium (IV)-based vacancy-ordered double perovskite halides with tunable 1.0 to 1.8 eV bandgaps for photovoltaic applications. ACS Energy Letters 3(2), 297–304 (2018)

    Article  CAS  Google Scholar 

  128. M. Chen, M.G. Ju, A.D. Carl, Y. Zong, R.L. Grimm, J. Gu, N.P. Padture, Cesium titanium (IV) bromide thin films based stable lead-free perovskite solar cells. Joule 2(3), 558–570 (2018)

    Article  CAS  Google Scholar 

  129. C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52(15), 9019–9038 (2013)

    Article  CAS  Google Scholar 

  130. F. Hao, C.C. Stoumpos, R.P. Chang, M.G. Kanatzidis, Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. Journal of American Chemical Society 136(22), 8094–8099 (2014)

    Article  CAS  Google Scholar 

  131. Y. Li, W. Sun, W. Yan, S. Ye, H. Rao, H. Peng, C. Huang, 50 % Sn-Based Planar Perovskite Solar Cell with Power Conversion Efficiency up to 13.6 %. Advanced Energy Materials 6(24), 1601353 (2016)

    Article  CAS  Google Scholar 

  132. X. Liu, Z. Yang, C.C. Chueh, A. Rajagopal, S.T. Williams, Y. Sun, A.K. Jen Y, Improved efficiency and stability of Pb–Sn binary perovskite solar cells by Cs substitution. Journal of Materials Chemistry A 4(46), 17939–17945 (2016)

    Article  CAS  Google Scholar 

  133. G.E. Eperon, T. Leijtens, K.A. Bush, R. Prasanna, T. Green, J.T.W. Wang, H.J. Snaith, Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 354(6314), 861–865 (2016)

    Article  CAS  Google Scholar 

  134. T. Leijtens, R. Prasanna, K.A. Bush, G.E. Eperon, J.A. Raiford, A. Gold-Parker, M.D. McGehee, Tin–lead halide perovskites with improved thermal and air stability for efficient all-perovskite tandem solar cells. Sustainable Energy & Fuels 2(11), 2450–2459 (2018)

    Article  CAS  Google Scholar 

  135. D. Zhao, Y. Yu, C. Wang, W. Liao, N. Shrestha, C.R. Grice, Y. Yan, Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nature Energy 2(4), 1–7 (2017)

    Article  CAS  Google Scholar 

  136. J. Tong, Z. Song, D.H. Kim, X. Chen, C. Chen, A.F. Palmstrom, K. Zhu, Carrier lifetimes of > 1 µs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 364(6439), 475–479 (2019)

    Article  CAS  Google Scholar 

  137. Jiang, T., Chen, Z., Chen, X., Liu, T., Chen, X., Sha, W. E., Yang, Y. (2020). Realizing High Efficiency over 20 % of Low-Bandgap Pb–Sn‐Alloyed Perovskite Solar Cells by In Situ Reduction of Sn4+. Solar RRL, 4(3), 1900467

  138. C. Liu, W. Li, H. Li, C. Zhang, J. Fan, Y. Mai, C60 additive-assisted crystallization in CH3NH3Pb0.75Sn0.25I3 perovskite solar cells with high stability and efficiency. Nanoscale 9(37), 13967–13975 (2017)

    Article  CAS  Google Scholar 

  139. S. Lee, D.W. Kang, Highly efficient and stable Sn-rich perovskite solar cells by introducing bromine. ACS Appl. Mater. Interfaces 9(27), 22432–22439 (2017)

    Article  CAS  Google Scholar 

  140. S. Lee, T.J. Ha, D.W. Kang, Mixed-halide Pb-Sn binary perovskite films with various Sn-content for Pb-reduced solar cells. Mater. Lett. 227, 311–314 (2018)

    Article  CAS  Google Scholar 

  141. Y. Wang, W. Fu, J. Yan, J. Chen, W. Yang, H. Chen, Low-bandgap mixed tin–lead iodide perovskite with large grains for high performance solar cells. Journal of Materials Chemistry A 6(27), 13090–13095 (2018)

    Article  CAS  Google Scholar 

  142. N. Li, Z. Zhu, J. Li, A.K.Y. Jen, L. Wang, Inorganic CsPb1 – xSnxIBr2 for Efficient Wide-Bandgap Perovskite Solar Cells. Advanced energy materials 8(22), 1800525 (2018)

    Article  CAS  Google Scholar 

  143. R. Prasanna, T. Leijtens, S.P. Dunfield, J.A. Raiford, E.J. Wolf, S.A. Swifter, M.D. McGehee, Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability. Nature Energy 4(11), 939–947 (2019)

    Article  CAS  Google Scholar 

  144. Z. Yang, X. Zhang, W. Yang, G.E. Eperon, D.S. Ginger, Tin–lead alloying for efficient and stable all-inorganic perovskite solar cells. Chem. Mater. 32(7), 2782–2794 (2020)

    Article  CAS  Google Scholar 

  145. Q. Han, Y. Wei, R. Lin, Z. Fang, K. Xiao, X. Luo, H. Tan, Low-temperature processed inorganic hole transport layer for efficient and stable mixed Pb-Sn low-bandgap perovskite solar cells. Science Bulletin 64(19), 1399 (2019)

    Article  Google Scholar 

  146. M. Hu, M. Chen, P. Guo, H. Zhou, J. Deng, Y. Yao, Y. Zhou, Sub-1.4 eV bandgap inorganic perovskite solar cells with long-term stability. Nature communications 11(1), 1–10 (2020)

    CAS  Google Scholar 

  147. X. Zhou, L. Zhang, X. Wang, C. Liu, S. Chen, M. Zhang, B. Xu, Highly Efficient and Stable GABr-Modified Ideal‐Bandgap (1.35 eV) Sn/Pb Perovskite Solar Cells Achieve 20.63 % Efficiency with a Record Small Voc Deficit of 0.33 V. Adv. Mater. 32(14), 1908107 (2020)

    Article  CAS  Google Scholar 

  148. M. Wei, K. Xiao, G. Walters, R. Lin, Y. Zhao, M.I. Saidaminov, E.H. Sargent, Combining efficiency and stability in mixed tin–lead perovskite solar cells by capping grains with an ultrathin 2D layer. Adv. Mater. 32(12), 1907058 (2020)

    Article  CAS  Google Scholar 

  149. C.F.J. Lau, M. Zhang, X. Deng, J. Zheng, J. Bing, Q. Ma, A. Ho-Baillie, Strontium-doped low-temperature-processed CsPbI2Br perovskite solar cells. ACS Energy Letters 2(10), 2319–2325 (2017)

    Article  CAS  Google Scholar 

  150. C.F.J. Lau, X. Deng, J. Zheng, J. Kim, Z. Zhang, M. Zhang, A. Ho-Baillie, Enhanced performance via partial lead replacement with calcium for a CsPbI3 perovskite solar cell exceeding 13 % power conversion efficiency. Journal of Materials Chemistry A 6(14), 5580–5586 (2018)

    Article  CAS  Google Scholar 

  151. F. Yang, D. Hirotani, G. Kapil, M.A. Kamarudin, C.H. Ng, Y. Zhang, S. Hayase, All-Inorganic CsPb1 – XGeXI2Br Perovskite with Enhanced Phase Stability and Photovoltaic Performance. Angew. Chem. Int. Ed. 57(39), 12745–12749 (2018)

    Article  CAS  Google Scholar 

  152. W. Xiang, Z. Wang, D.J. Kubicki, W. Tress, J. Luo, D. Prochowicz, A. Hagfeldt, Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells. Joule 3(1), 205–214 (2019)

    Article  CAS  Google Scholar 

  153. L. Chen, L. Wan, X. Li, W. Zhang, S. Fu, Y. Wang, J. Fang, Inverted all-inorganic CsPbI2Br perovskite solar cells with promoted efficiency and stability by nickel incorporation. Chem. Mater. 31(21), 9032–9039 (2019)

    Article  CAS  Google Scholar 

  154. Q. Ma, S. Huang, X. Wen, M.A. Green, A.W. Ho-Baillie, Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation. Advanced Energy Materials 6(7), 1502202 (2016)

    Article  CAS  Google Scholar 

  155. J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, J. Liu, All-inorganic perovskite solar cells. Journal of American Chemical Society 138(49), 15829–15832 (2016)

    Article  CAS  Google Scholar 

  156. C. Liu, W. Li, C. Zhang, Y. Ma, J. Fan, Y. Mai, All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13 %. Journal of American chemical society 140(11), 3825–3828 (2018)

    Article  CAS  Google Scholar 

  157. J. Liang, P. Zhao, C. Wang, Y. Wang, Y. Hu, G. Zhu, Z. Jin, CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability. Journal of American Chemical Society 139(40), 14009–14012 (2017)

    Article  CAS  Google Scholar 

  158. Y. Hu, F. Bai, X. Liu, Q. Ji, X. Miao, T. Qiu, S. Zhang, Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells. ACS Energy Letters 2(10), 2219–2227 (2017)

    Article  CAS  Google Scholar 

  159. J. Liang, Z. Liu, L. Qiu, Z. Hawash, L. Meng, Z. Wu, Y. Qi, Enhancing optical, electronic, crystalline, and morphological properties of cesium lead halide by Mn substitution for high-stability all‐inorganic perovskite solar cells with carbon electrodes. Advanced Energy Materials 8(20), 1800504 (2018)

    Article  CAS  Google Scholar 

  160. Y. Li, J. Duan, H. Yuan, Y. Zhao, B. He, Q. Tang, Lattice modulation of alkali metal cations doped Cs1 – xRxPbBr3 halides for inorganic perovskite solar cells. Solar RRL 2(10), 1800164 (2018)

    Article  CAS  Google Scholar 

  161. J. Duan, Y. Zhao, X. Yang, Y. Wang, B. He, Q. Tang, Lanthanide Ions Doped CsPbBr3 Halides for HTM-Free 10.14 %‐Efficiency Inorganic Perovskite Solar Cell with an Ultrahigh Open‐Circuit Voltage of 1.594 V. Advanced Energy Materials 8(31), 1802346 (2018)

    Article  CAS  Google Scholar 

  162. X. Liu, X. Tan, Z. Liu, H. Ye, B. Sun, T. Shi, G. Liao, Boosting the efficiency of carbon-based planar CsPbBr3 perovskite solar cells by a modified multistep spin-coating technique and interface engineering. Nano energy 56, 184–195 (2019)

    Article  CAS  Google Scholar 

  163. J. Duan, Y. Zhao, B. He, Q. Tang, High-purity inorganic perovskite films for solar cells with 9.72 % efficiency. Angew. Chem. 130(14), 3849–3853 (2018)

    Article  Google Scholar 

  164. W. Zhu, Q. Zhang, D. Chen, Z. Zhang, Z. Lin, J. Chang, Y. Hao, Intermolecular Exchange Boosts Efficiency of Air-Stable, Carbon‐Based All‐Inorganic Planar CsPbIBr2 Perovskite Solar Cells to Over 9 %. Advanced Energy Materials 8(30), 1802080 (2018)

    Article  CAS  Google Scholar 

  165. W. Zhu, Z. Zhang, W. Chai, Q. Zhang, D. Chen, Z. Lin, Y. Hao, Band Alignment Engineering Towards High Efficiency Carbon-Based Inorganic Planar CsPbIBr2 Perovskite Solar Cells. ChemSusChem 12(10), 2318–2325 (2019)

    Article  CAS  Google Scholar 

  166. Y. Guo, F. Zhao, J. Tao, J. Jiang, J. Zhang, J. Yang, J. Chu, Efficient and hole-transporting‐layer‐free CsPbI2Br planar heterojunction perovskite solar cells through rubidium passivation. ChemSusChem 12(5), 983–989 (2019)

    Article  CAS  Google Scholar 

  167. W. Chen, S. Zhang, Z. Liu, S. Wu, R. Chen, M. Pan, W. Chen, A Tailored Nickel Oxide Hole-Transporting Layer to Improve the Long‐Term Thermal Stability of Inorganic Perovskite Solar Cells. Solar RRL 3(11), 1900346 (2019)

    Article  CAS  Google Scholar 

  168. Y. Zhao, J. Duan, H. Yuan, Y. Wang, X. Yang, B. He, Q. Tang, Using SnO2 QDs and CsMBr3 (M = Sn, Bi, Cu) QDs as Charge-Transporting Materials for 10.6 %‐Efficiency All‐Inorganic CsPbBr3 Perovskite Solar Cells with an Ultrahigh Open‐Circuit Voltage of 1.610 V. Solar RRL 3(3), 1800284 (2019)

    Article  CAS  Google Scholar 

  169. M. Tang, B. He, D. Dou, Y. Liu, J. Duan, Y. Zhao, Q. Tang, Toward efficient and air-stable carbon-based all-inorganic perovskite solar cells through substituting CsPbBr3 films with transition metal ions. Chem. Eng. J. 375, 121930 (2019)

    Article  CAS  Google Scholar 

  170. H. Ban, Q. Sun, T. Zhang, H. Li, Y. Shen, M. Wang, Stabilization of inorganic CsPb0.5Sn0.5I2Br perovskite compounds by antioxidant tea polyphenol. Solar RRL 4(3), 1900457 (2020)

    Article  CAS  Google Scholar 

  171. S. Thampy, B. Zhang, K.H. Hong, K. Cho, J.W. Hsu, Altered Stability and Degradation Pathway of CH3NH3PbI3 in Contact with Metal Oxide. ACS Energy Letters 5(4), 1147–1152 (2020)

    Article  CAS  Google Scholar 

  172. B. Li, Y. Li, C. Zheng, D. Gao, W. Huang, Advancements in the stability of perovskite solar cells: degradation mechanisms and improvement approaches. RSC Adv. 6(44), 38079–38091 (2016)

    Article  CAS  Google Scholar 

  173. F. Li, M. Liu, Recent efficient strategies for improving the moisture stability of perovskite solar cells. Journal of Materials Chemistry A 5(30), 15447–15459 (2017)

    Article  CAS  Google Scholar 

  174. E.J. Juarez-Perez, L.K. Ono, Y. Qi, Thermal degradation of formamidinium based lead halide perovskites into sym-triazine and hydrogen cyanide observed by coupled thermogravimetry-mass spectrometry analysis. Journal of Materials Chemistry A 7(28), 16912–16919 (2019)

    Article  CAS  Google Scholar 

  175. L. Ma, D. Guo, M. Li, C. Wang, Z. Zhou, X. Zhao, Z. Nie, Temperature-Dependent Thermal Decomposition Pathway of Organic–Inorganic Halide Perovskite Materials. Chem. Mater. 31(20), 8515–8522 (2019)

    Article  CAS  Google Scholar 

  176. A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M.K. Nazeeruddin, F. De Angelis, Cation-induced band-gap tuning in organohalide perovskites: interplay of spin–orbit coupling and octahedra tilting. Nano Lett. 14(6), 3608–3616 (2014)

    Article  CAS  Google Scholar 

  177. F. El-Mellouhi, A. Marzouk, E.T. Bentria, S.N. Rashkeev, S. Kais, F.H. Alharbi, Hydrogen bonding and stability of hybrid organic–inorganic perovskites. ChemSusChem 9(18), 2648–2655 (2016)

    Article  CAS  Google Scholar 

  178. S. Thampy, B. Zhang, J.G. Park, K.H. Hong, J.W. Hsu, Bulk and interfacial decomposition of formamidinium iodide (HC(NH2)2I) in contact with metal oxide. Materials Advances 1(9), 3349–3357 (2020)

    Article  CAS  Google Scholar 

  179. A.F. Akbulatov, V.M. Martynenko, L.A. Frolova, N.N. Dremova, I. Zhidkov, S.A. Tsarev, P.A. Troshin, Intrinsic thermal decomposition pathways of lead halide perovskites APbX3. Sol. Energy Mater. Sol. Cells 213, 110559 (2020)

    Article  CAS  Google Scholar 

  180. A.F. Akbulatov, L.A. Frolova, N.N. Dremova, I. Zhidkov, V.M. Martynenko, S.A. Tsarev, P.A. Troshin, Light or heat: what is killing lead halide perovskites under solar cell operation conditions? J. Phys. Chem. Lett. 11(1), 333–339 (2019)

    Article  CAS  Google Scholar 

  181. D.L. Busipalli, K.Y. Lin, S. Nachimuthu, J.C. Jiang, Enhanced moisture stability of cesium lead iodide perovskite solar cells–a first-principles molecular dynamics study. Physical Chemistry Chemical Physics 22(10), 5693–5701 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MN Acknowledges DST Inspire Fellowship Code IF190229. SKS acknowledge financial assistance from SERB file no ECR/2018/000428. AG acknowledges SERB file no SRG/2019/000318.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip K. Saha.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, M., Akthar, A.J., Guchhait, A. et al. A roadmap towards stable perovskite solar cells: prospective on substitution of organic (A) & inorganic (B) cations. J Mater Sci: Mater Electron 32, 18466–18511 (2021). https://doi.org/10.1007/s10854-021-06431-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06431-2

Navigation