Skip to main content
Log in

Thickness and annealing evolution to physical properties of e-beam evaporated ZnTe thin films as a rear contact for CdTe solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The CdTe solar cell engineering is still lacking maximum achievable power conversion efficiency as predicted based upon the detailed balance. In device development, each constituent layer plays important role and to reduce open-circuit voltage loss, the reduction of back surface recombination is a promising approach. It could be made by introducing a wide-band gap ZnTe layer between the absorber CdTe layer and metal contact which can solve the issue of the Schottky barrier at the interface. The ZnTe layers also need optimization to the physical properties to implicate in CdTe-based device and therefore, the present work reports annealing and thickness evolution to ZnTe films to seek their feasibility as rear contact material where 200 nm and 300 nm thin ZnTe films are developed employing e-beam evaporation and subsequently annealed at 100 °C, 200 °C and 300 °C in air ambient followed by characterizations by amicable tools for exploration of relevant physical properties. Findings demonstrate that the film thickness and annealing temperature have considerably affected the physical properties of the developed films and the 200 nm ZnTe thin films annealed at 100 °C may be implicated as rear contact material in CdTe solar cell devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y.M. Hunge, A.A. Yadav, V.L. Mathe, Photocatalytic hydrogen production using TiO2 nanogranules prepared by hydrothermal route. Chem. Phys. Lett. 731, 136582 (2019). https://doi.org/10.1016/j.cplett.2019.07.010

    Article  CAS  Google Scholar 

  2. Y.M. Hunge, A.A. Yadav, S.B. Kulkarni, V.L. Mathe, A multifunctional ZnO thin film based devices for photoelectrocatalytic degradation of terephthalic acid and CO2 gas sensing applications. Sens. Actuators B: Chem. 274, 1–9 (2018). https://doi.org/10.1016/j.snb.2018.07.117

    Article  CAS  Google Scholar 

  3. Y.M. Hunge, A.A. Yadav, S. Liu, V.L. Mathe, Sonochemical synthesis of CZTS photocatalyst for photocatalytic degradation of phthalic acid. Ultrason. Sonochem. 56, 284–289 (2019). https://doi.org/10.1016/j.ultsonch.2019.04.003

    Article  CAS  Google Scholar 

  4. A.A. Yadav, Y.M. Hunge, S.B. Kulkarni, Chemical synthesis of Co3O4 nanowires for symmetric supercapacitor device. J. Mater. Sci.: Mater. Electron. 29, 16401–16409 (2018). https://doi.org/10.1007/s10854-018-9731-7

    Article  CAS  Google Scholar 

  5. A.A. Yadav, Y.M. Hunge, S. Liu, S.B. Kulkarni, Ultrasound assisted growth of NiCo2O4@carbon cloth for high energy storage device application. Ultrason. Sonochem. 56, 290–296 (2019). https://doi.org/10.1016/j.ultsonch.2019.04.007

    Article  CAS  Google Scholar 

  6. X. Jin, J. Li, G. Chen, C. Xue, W. Liu, C. Zhu, Preparation of Cu2ZnSnS4 based thin film solar cells by a combustion method. Sol. Energy Mater. Sol. Cells 146, 16–24 (2016). https://doi.org/10.1016/j.solmat.2015.11.027

    Article  CAS  Google Scholar 

  7. B.I. MacDonald, A. Martucci, S. Rubanov, S.E. Watkins, P. Mulvaney, J.J. Jasieniak, Layer-by-layer assembly of sintered CdSexTe1–x nanocrystal solar cells. ACS Nano 8, 5995–6004 (2012). https://doi.org/10.1021/nn3009189

    Article  CAS  Google Scholar 

  8. M. Teena, A.G. Kunjomana, K. Ramesh, R. Venkatesh, N. Naresh, Architecture of monophase InSe thin film structures for solar cell applications. Sol. Energy Mater. Sol. Cells 166, 190–196 (2017). https://doi.org/10.1016/j.solmat.2017.03.027

    Article  CAS  Google Scholar 

  9. D. C. Sharma, S. Srivastava, Y. K. Vijay, Y. K. Sharma, Preparation and optical properties of ZnTe/ZnTe:Cr Bilayer thin films. Int. J. Rec. Res. Rev. 2, 16–20 (2012). http://www.ijrrr.com/papers2/paper3.pdf

  10. S. Patra, S.K. Pardhan, Microstructural, optical and quantum confinement effect study of mechanically synthesized ZnTe quantum dots. Acta Mater. 60, 131–138 (2012). https://doi.org/10.1016/j.actamat.2011.09.024

    Article  CAS  Google Scholar 

  11. G.K. Rao, K.V. Bangera, G.K. Shivakumar, Studies on the photoconductivity of vacuum deposited ZnTe thin films. Mater. Res. Bull. 45, 1357–1360 (2010). https://doi.org/10.1016/j.materresbull.2010.06.050

    Article  CAS  Google Scholar 

  12. S. Rajpal, S.R. Kumar, Thermoluminescent properties of nanocrystalline ZnTe thin films: structural and morphological studies. Phys. B: Condensed Matter 534, 145–149 (2018). https://doi.org/10.1016/j.physb.2018.01.046

    Article  CAS  Google Scholar 

  13. E.R. Shaaban, I. Kansal, S.H. Mohamed, J.M.F. Ferreira, Microstructural parameters and optical constants of ZnTe thin films with various thicknesses. Phys. B: Condensed Matter 404, 3571–3576 (2009). https://doi.org/10.1016/j.physb.2009.06.002

    Article  CAS  Google Scholar 

  14. N.A. Shah, W. Mahmood, Physical properties of sublimated zinc telluride thin films for solar cell applications. Thin Solid Films 544, 307–312 (2013). https://doi.org/10.1016/j.tsf.2013.03.088

    Article  CAS  Google Scholar 

  15. D. Suthar, Himanshu, S.L. Patel, S. Chander, M.D. Kannan, M.S. Dhaka, Enhanced physicochemical properties of ZnTe thin films as potential buffer layer in solar cell applications, Solid State Sci. 107, 106346. (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106346.

  16. K.R. Murali, M. Ziaudeen, N. Jayaprakash, Structural and electrical properties of brush plated ZnTe films. Solid State Electron. 50, 1692-1695 (2006). https://doi.org/10.1016/j.sse.2006.09.003

    Article  CAS  Google Scholar 

  17. C.A. Wolden, A. Abbas, J. Li, D.R. Diercks, D.M. Meysing, T.R. Ohno, J.D. Beach, T.M. Barnes, J.M. Walls, The roles of ZnTe buffer layers on CdTe solar cell performance. Sol. Energy Mater. Sol. Cells 147, 203–210 (2016). https://doi.org/10.1016/j.solmat.2015.12.019

    Article  CAS  Google Scholar 

  18. T.A. Gessert, A.R. Mason, P. Sheldon, A.B. Swartzlander, D. Niles, T.J. Coutts, Development of Cu-doped ZnTe as a back-contact interface layer for thin-film CdS/CdTe solar cells. J. Vac. Sci. Technol. A 14, 806 (1996). https://doi.org/10.1116/1.580394

    Article  CAS  Google Scholar 

  19. S. Chander, M.S. Dhaka, Time evolution to CdCl2 treatment on Cd-based solar cell devices fabricated by vapor evaporation. Sol. Energy 150, 577–583 (2017). https://doi.org/10.1016/j.solener.2017.05.013

    Article  CAS  Google Scholar 

  20. O. Oklobia, G. Kartopu, S.J.C. Irvine, Properties of arsenic-doped ZnTe thin films as a back contact for CdTe solar cells. Materials 12, 3706 (2019). https://doi.org/10.3390/ma12223706

    Article  CAS  Google Scholar 

  21. A.M. Salem, T.M. Dahy, Y.A. El-Gendy, Thickness dependence of optical parameters for ZnTe thin films deposited by electron beam gun evaporation technique. Phys. B: Condensed Matter 403, 3027–3033 (2008). https://doi.org/10.1016/j.physb.2008.03.005

    Article  CAS  Google Scholar 

  22. H. Bellakhder, A. Outzourhit, E.L. Ameziane, Study of ZnTe thin films deposited by r.f. sputtering. Thin Solid Films 382, 30–33 (2001). https://doi.org/10.1016/S0040-6090(00)01697-7

    Article  CAS  Google Scholar 

  23. J.R. Rathod, H.S. Patel, K.D. Patel, V.M. Pathak, Structural and optical characterization of zinc telluride thin films. Adv. Mat. Res. 665, 254–262 (2013). https://doi.org/10.4028/www.scientific.net/AMR.665.254

    Article  CAS  Google Scholar 

  24. D. Agrawal, D. Suthar, R. Agarwal, Himanshu, S.L. Patel, M.S. Dhaka, Achieving desired quality of ZnS buffer layer by optimization using air annealing for solar cell applications. Phys. Lett. A 384, 126557. (2020). https://doi.org/10.1016/j.physleta.2020.126557.

  25. S.H. Mohamed, Photocatalytic, optical and electrical properties of copper-doped zinc sulfide thin films. J. Phys. D: Appl. Phys. 43, 035406 (2010). https://doi.org/10.1088/0022-3727/43/3/035406

    Article  CAS  Google Scholar 

  26. S.L. Patel, Himanshu, S. Chander, A. Purohit, M.D. Kannan, M.S. Dhaka, Understanding the physical properties of CdCl2 treated thin CdSe films for solar cell applications. Opt. Mater. 89, 42–47 (2019). https://doi.org/10.1016/j.optmat.2019.01.001

    Article  CAS  Google Scholar 

  27. E. Bacaksiz, S. Aksu, N. Ozer, M. Tomakin, A. Ozcelik, The influence of substrate temperature on the morphology, optical and electrical properties of thermal-evaporated ZnTe Thin Films. Appl. Surf. Sci. 256, 1566–1572 (2009). https://doi.org/10.1016/j.apsusc.2009.09.023

    Article  CAS  Google Scholar 

  28. W. Mahmood, J. Ali, I. Zahid, A. Thomas, A.U. Haq, Optical and electrical studies of CdS thin films with thickness variation. Optik 158, 1558–1566 (2018). https://doi.org/10.1016/j.ijleo.2018.01.045

    Article  CAS  Google Scholar 

  29. A. Purohit, S. Chander, A. Sharma, S.P. Nehra, M.S. Dhaka, Impact of low temperature annealing on structural, optical, electrical and morphological properties of ZnO thin films grown by RF sputtering for photovoltaic applications. Opt. Mater. 49, 51–58 (2015). https://doi.org/10.1016/j.optmat.2015.08.021

    Article  CAS  Google Scholar 

  30. D. Suthar, G. Chasta, Himanshu, S.L. Patel, S. Chander, M.D. Kannan, M.S. Dhaka, Impact of different annealing conditions on physical properties of ZnSe thin films for ecofriendly buffer layer applications. Mater. Res. Bull. 132, 110982 (2020). https://doi.org/10.1016/j.materresbull.2020.110982

  31. S. Lalitha, R. Sathyamoorthy, S. Senthilarasu, A. Subbarayan, K. Natarajan, Characterization of CdTe thin film—dependence of structural and optical properties on temperature and thickness. Sol. Energy Mater. Sol. Cells 82, 187–199 (2004). https://doi.org/10.1016/j.solmat.2004.01.017

    Article  CAS  Google Scholar 

  32. A. Purohit, S. Chander, S.P. Nehra, M.S. Dhaka, Thickness dependent physical properties of thermally evaporated nanocrystalline CdSe thin films. Acta Metall. Sin. (Engl. Lett.) 28, 1299–1304 (2015). https://doi.org/10.1007/s40195-015-0326-5

    Article  CAS  Google Scholar 

  33. S. Venkatachalam, D. Mangalaraj, S.K. Narayandass, K. Kim, J. Yi, Structure, optical and electrical properties of ZnSe thin films. Phys. B: Condensed Matter 358, 27–35 (2005). https://doi.org/10.1016/j.physb.2004.12.022

    Article  CAS  Google Scholar 

  34. N. Gopakumar, P.S. Anjana, P.K.V. Pillai, Chemical bath deposition and characterization of CdSe thin films for optoelectronic applications. J. Mater. Sci. 45, 6653–6656 (2010). https://doi.org/10.1007/s10853-010-4756-1

    Article  CAS  Google Scholar 

  35. F.J. Ochoa-Estrella, A. Vera-Marquina, I. Mejia, A.L. Leal-Cruz, M. Quevedo-López, Pressure influence on structural and optical behaviors of ZnTe thin films grown by PLD. J. Mater. Sci.: Mater. Electron. 29, 7629–7636 (2018). https://doi.org/10.1007/s10854-018-8755-3

    Article  CAS  Google Scholar 

  36. S. Chander, M.S. Dhaka, Enhancement in microstructural and optoelectrical properties of thermally evaporated CdTe films for solar cells. Results Phys. 8, 1131–1135 (2018). https://doi.org/10.1016/j.rinp.2018.01.055

    Article  Google Scholar 

  37. H. Singh, N. Duklan, T. Singh, A. Thakur, J. Sharma, Effect of vacuum annealing on structural and optical properties of nanocrystalline ZnTe thin films. J. Mater. Sci.: Mater. Electron. 29, 4992–4998 (2018). https://doi.org/10.1007/s10854-017-8460-7

    Article  CAS  Google Scholar 

  38. S. Chander, M.S. Dhaka, Effect of thickness on physical properties of electron beam vacuum evaporated CdZnTe thin films for tandem solar cells. Physica E 84, 112–117 (2016). https://doi.org/10.1016/j.physe.2016.05.045

    Article  CAS  Google Scholar 

  39. R. Sharma, Himanshu, S.L. Patel, S. Chander, M.D. Kannan, M.S. Dhaka, Physical properties of ZnSe thin films: air and vacuum annealing evolution to buffer layer applications. Phys. Lett. A 384, 126097 (2020). https://doi.org/10.1016/j.physleta.2019.126097

  40. S. Chuhadiya, R. Sharma, Himanshu, S.L. Patel, S. Chander, M.D. Kannan, M.S. Dhaka, Thermal annealing induced physical properties of ZnSe thin films for buffer layer in solar cells. Physica E 117, 1145 (2020). https://doi.org/10.1016/j.physe.2019.113845

  41. K.Z. Yahiya, E.T. Salem, M.S. Muhammad, Optical constants of zinc telluride thin films in the visible and near-infrared regions. Eng. Tech. 26, 512–519 (2008). https://www.iasj.net/iasj?func=article&aId=26543

  42. Himanshu, S.L. Patel, A. Thakur, M.D. Kannan, M.S. Dhaka, Analysis of different annealing conditions on physical properties of Bi doped CdTe thin films for potential absorber layer in solar cells. Sol. Energy 199, 772–781 (2020). https://doi.org/10.1016/j.solener.2020.02.066

  43. S.L. Patel, S. Chander, A. Purohit, M.D. Kannan, M.S. Dhaka, Influence of NH4Cl treatment on physical properties of CdTe thin films for absorber layer applications. J. Phys. Chem. Solids 123, 216–222 (2018). https://doi.org/10.1016/j.jpcs.2018.07.021

    Article  CAS  Google Scholar 

  44. T. Hussain, M.F. Al-Kuhaili, S.M.A. Durrani, H.A. Qayyum, Influence of angle deposition on the properties of ZnTe thin films prepared by thermal evaporation. Ceram. Int. 44, 10130–10140 (2018). https://doi.org/10.1016/j.ceramint.2018.02.232

    Article  CAS  Google Scholar 

  45. S. Chander, M.S. Dhaka, Optimization of physical properties of vacuum evaporated CdTe thin films with the application of thermal treatment for solar cells. Mater. Sci. Semicond. Process 40, 708–712 (2015). https://doi.org/10.1016/j.mssp.2015.07.063

    Article  CAS  Google Scholar 

  46. M. Singh, K.C. Bhahada, Y.K. Vijay, Variation of optical band gap in obliquely deposited selenium thin films. Indian J. Pure Appl. Phys. 43, 129–131 (2005)

    CAS  Google Scholar 

  47. M.I. Hossain, M. Kamruzzaman, A.B.M. Obaidul Islam, Effects of temperature in electrodeposition of ZnTe thin films. J. Mater. Sci.: Mater. Electron. 26, 1756–1762 (2015). https://doi.org/10.1007/s10854-014-2604-9

    Article  CAS  Google Scholar 

  48. S. Chander, M.S. Dhaka, Thermal evolution of physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cells. J. Mater. Sci.: Mater. Electron. 27, 11961–11973 (2016). https://doi.org/10.1007/s10854-016-5343-2

    Article  CAS  Google Scholar 

  49. K. Ou, S. Wang, L. Bai, Y. Wang, K. Zhang, L. Yi, Investigation on annealing temperature-dependent optical properties of electron beam evaporated ZnSe thin films. Thin Solid Films 669, 247–252 (2019). https://doi.org/10.1016/j.tsf.2018.11.013

    Article  CAS  Google Scholar 

  50. A.A. Ibrahim, N.Z. El Sayed, M.A. Kaid, A. Ashour, Structural and electrical properties of evaporated ZnTe thin films. Vacuum 75, 189–194 (2004). https://doi.org/10.1016/j.vacuum.2004.02.005

    Article  CAS  Google Scholar 

  51. Z. Zhang, J. Li, H. Zhang, X. Pan, E. Xie, Thickness-dependent field emission from ZnTe films prepared by magnetron sputtering. J. Alloys Compd. 549, 88–91 (2013). https://doi.org/10.1016/j.jallcom.2012.09.046

    Article  CAS  Google Scholar 

  52. O.I. Olusola, M.L. Madugu, N.A. Abdul-Manaf, I.M. Dharmadasa, Growth and characterisation of n- and p-type ZnTe thin films for applications in electronic devices. Curr. Appl. Phys. 16, 120–130 (2016). https://doi.org/10.1016/j.cap.2015.11.008

    Article  Google Scholar 

Download references

Acknowledgements

The authors are highly thankful to Department of Science and Technology, Rajasthan, Jaipur for providing financial support under the Research and Development Project vide (No. F.7 (3) ST/R&D/2016/5677). The authors are also thankful to MRC, MNIT, Jaipur, PSG College of Technology, Coimbatore and the Department of Physics, MLSU, Udaipur for providing deposition and characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Dhaka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suthar, D., Himanshu, Patel, S.L. et al. Thickness and annealing evolution to physical properties of e-beam evaporated ZnTe thin films as a rear contact for CdTe solar cells. J Mater Sci: Mater Electron 32, 19070–19082 (2021). https://doi.org/10.1007/s10854-021-06424-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06424-1

Navigation