Skip to main content
Log in

Influence of top layer thickness on the performance of WO3/Ag/WO3-transparent electrodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work presents a methodology based on the WO3/Ag/WO3 (WAW) tri-layer configuration for obtaining indium-free TCOs by RF sputtering at room temperature. The tri-layer performance is shown to be very sensitive to the thickness variations. Through the optimization of the WO3 top layer, it was possible to obtain a combination of thicknesses that allow to maximize the optical transmittance and at the same time lower the sheet resistance, this translates into an excellent compromise between these two properties that are usually antagonists. Using a metallic layer with a thickness that is just at its percolation limit, high electrical conductivity values can be obtained without compromising the optical transmittance. Thickness variation of the dielectric layers in turn, allowed to optimize the transport of the electrons to the metallic film. The overall tri-layer performance was evaluated using multifigure of merit analysis. Our best results were obtained for WO3(40 nm)/Ag(7 nm)/WO3(20 nm) with 1.2 Ω/sq sheet resistance and transmittance above 85%. Therefore, it is possible to obtain a TCO in an indium-free tri-layer WAW configuration at room temperature with good performance that represents a viable alternative that is not restricted by the scarcity of indium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. Frenzel, T. Hirsch, J. Gutzmer, Ore Geol. Rev. 76, 52 (2016)

    Article  Google Scholar 

  2. T.H. Yeh, C.C. Lee, C.J. Shih, G. Kumar, S. Biring, S.W. Liu, Org. Electron. 59, 266 (2018)

    Article  CAS  Google Scholar 

  3. Y. Yin, C. Lan, H. Guo, C. Li, ACS Appl. Mater. Interfaces 8, 3861 (2016)

    Article  CAS  Google Scholar 

  4. A. Bingel, M. Steglich, P. Naujok, R. Müller, U. Schulz, N. Kaiser, A. Tünnermann, Thin Solid Films 616, 594 (2016)

    Article  CAS  Google Scholar 

  5. J. Ho Kim, Y.J. Moon, S.K. Kim, Y.Z. Yoo, T.Y. Seong, Ceram. Int. 41, 14805 (2015)

    Article  CAS  Google Scholar 

  6. J. Ho Kim, J. Hwan Lee, S.W. Kim, Y.Z. Yoo, T.Y. Seong, Ceram. Int. 41, 7146 (2015)

    Article  CAS  Google Scholar 

  7. S. Kim, J.L. Lee, J. Photonics Energy 2, 021215 (2012)

    Article  CAS  Google Scholar 

  8. H. Najafi-Ashtiani, B. Akhavan, F. Jing, M.M. Bilek, ACS Appl. Mater. Interfaces 11, 14871 (2019)

    Article  CAS  Google Scholar 

  9. J. Hong, B.-S. Kim, B. Hou, S. Pak, T. Kim, A.-R. Jang, Y. Cho, S. Lee, G.-H. An, J.E. Jang, S.M. Morris, J.I. Sohn, S. Cha, A.C.S. Appl, Mater. Interfaces 13, 4244 (2021)

    Article  CAS  Google Scholar 

  10. G. Haacke, J. Appl. Phys. 47, 4086 (1976)

    Article  CAS  Google Scholar 

  11. J.A. Mendez-Gamboa, R. Castro-Rodriguez, I.V. Perez-Quintana, R.A. Medina-Esquivel, A. Martel-Arbelo, Thin Solid Films 599, 14 (2016)

    Article  CAS  Google Scholar 

  12. H. Li, Y. Lv, X. Zhang, X. Wang, X. Liu, Sol. Energy Mater. Sol. Cells 136, 86 (2015)

    Article  CAS  Google Scholar 

  13. S.F. Chen, S.J. Wang, Y.H. Li, Z.A. Zhu, X.T. Hong, J.H. Hu, M.C. Wang, Sensors 18, 2803 (2018)

    Article  Google Scholar 

  14. Y. Yin, T. Gao, Q. Xu, G. Cao, Q. Chen, H. Zhu, C. Lan, C. Li, J. Mater. Chem. A 8, 10973 (2020)

    Article  CAS  Google Scholar 

  15. Z. Wang, C. Zhang, R. Gao, D. Chen, S. Tang, J. Zhang, D. Wang, X. Lu, Y. Hao, Sol. Energy Mater. Sol. Cells 127, 193 (2014)

    Article  CAS  Google Scholar 

  16. L. Cattin, Y. Lare, M. Makha, M. Fleury, F. Chandezon, T. Abachi, M. Morsli, K. Napo, M. Addou, J.C. Bernède, Sol. Energy Mater. Sol. Cells 117, 103 (2013)

    Article  CAS  Google Scholar 

  17. J. Huang, X. Liu, Y. Lu, Y. Zhou, J. Xu, J. Li, H. Wang, J. Fang, Y. Yang, W. Wang, R. Tan, W. Song, Sol. Energy Mater. Sol. Cells 184, 73 (2018)

    Article  CAS  Google Scholar 

  18. H. Wei, H. Eilers, J. Phys. Chem. Solids 70, 459 (2009)

    Article  CAS  Google Scholar 

  19. G. Ramakrishnan, P.C.M. Planken, Opt. Lett. 36, 2572 (2011)

    Article  Google Scholar 

  20. R.H. Castillo, F. Peñuñuri, D. Canto-Reyes, A.B. Pool, J.A. Mendez-Gamboa, M. Acosta, Mater. Lett. 260, 126913 (2020)

    Article  CAS  Google Scholar 

  21. Y.W. Jo, C. Loka, K.S. Lee, J.H. Lim, RSC Adv. 10, 16187 (2020)

    Article  CAS  Google Scholar 

  22. D. Rabia, M. Blais, H. Essaidi, N. Stephant, G. Louarn, M. Morsli, S. Touihri, Thin Solid Films 669, 613 (2019)

    Article  CAS  Google Scholar 

  23. K. Jeon, H. Youn, S. Kim, S. Shin, M. Yang, Nanoscale Res. Lett. 7, 253 (2012)

    Article  Google Scholar 

  24. H. Essaidi, L. Cattin, Z. El Jouad, S. Touihri, M. Blais, E. Ortega, G. Louarn, M. Morsli, T. Abachi, T. Manoubi, M. Addou, M.A. del Valle, F. Diaz, J.C. Bernède, Vacuum 153, 225 (2018)

    Article  CAS  Google Scholar 

  25. X. Liu, X. Guo, Y. Lv, Y. Hu, J. Lin, Y. Fan, N. Zhang, X. Liu, A.C.S. Appl, Mater. Interfaces 10, 18141 (2018)

    Article  CAS  Google Scholar 

  26. J. Tauc, R. Grigorovi, A. Vancu, Phys. Status Solidi 15, 627 (1966)

    Article  CAS  Google Scholar 

  27. B. Fallahazad, S. Kim, L. Colombo, E. Tutuc, Appl. Phys. Lett. 97, 123105 (2010)

    Article  Google Scholar 

  28. Y. Wang, B. He, H. Wang, J. Xu, T. Ta, W. Li, Q. Wang, S. Yang, Y. Tang, B. Zou, Mater. Lett. 188, 107 (2017)

    Article  CAS  Google Scholar 

  29. A.A. Matias Velazquez, D. Canto-Reyes, J.A. Mendez-Gamboa, M. Acosta, Mater. Lett. 245, 65 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by CONACYT-SENER under contract 254667. R. Hernández Castillo, D. Canto-Reyes and Alicia Borges Pool acknowledge CONACYT postgraduate scholarship program. The authors thank the LANNBIO Nano-Biomaterials Laboratory (CINVESTAV- IPN Unidad Merida) for the access to SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Acosta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castillo, R.H., Canto-Reyes, D., Pool, A.B. et al. Influence of top layer thickness on the performance of WO3/Ag/WO3-transparent electrodes. J Mater Sci: Mater Electron 32, 19063–19069 (2021). https://doi.org/10.1007/s10854-021-06422-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06422-3

Navigation