Skip to main content

Advertisement

Log in

On the frequency-dependent complex-dielectric, complex-electric modulus and conductivity in Au/(NiS:PVP)/n-Si structures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The values of complex-dielectric (ε* = ε′jε″), loss-tangent (tanδ), complex-electric modulus (M* = M′ + jM″), and ac electrical-conductivity (σac) of the performed Au/(NiS:PVP)/n-Si structures were extracted from the measured impedance-spectroscopy method (ISM) in frequency range of 10 kHz–1 MHz and voltage ((− 2 V)–(+ 3 V)). These parameters, which constitute the main subject of our study, have been obtained from high frequency and voltage values, more particularly in the depletion and accumulation regions. The decrease of dielectric-constant (ε′), dielectric-loss (ε″), and tanδ with increasing frequency for almost every voltage were explained by Maxwell–Wagner type relaxation processes. The observed higher-values of ε′ and ε″ at low frequencies result from surface-states (Nss) and dipole-polarization. Since Nss has sufficient time to keep up with the applied voltage signal, dipoles can respond to the electric field to reorient themselves. An increase in M′ values was observed at increasing frequency values attributed to the long-distance mobility of the carriers. On the other hand, the observed peak in the M″ − ln (f) curves was attributed to a distinctive distribution of Nss located at Au/(NiS:PVP) interface depend on their lifetime. The obtained value of ε′ even at 10 kHz at 3 V is indicated that the used (NiS:PVP) organic-interlayer can be used a superior alternative instead of SiO2 or SnO2 which are conventional interlayers thanks to its low-cost, flexibility, easy production techniques such as spin-coating or electro-spinning technique at room condition, successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Wiley, New Jersey, 2007)

    Google Scholar 

  2. E.H. Nicollian, J.R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology (Wiley, New York, 1982)

    Google Scholar 

  3. Ç. Bilkan, Y. Azizian-Kalandaragh, Ş Altındal, R. Shokrani-Havigh, Frequency and voltage dependence dielectric properties, ac electrical conductivity and electric modulus profiles in Al/Co3O4-PVA/p-Si structures. Phys. B 500, 154–160 (2016)

    Article  CAS  Google Scholar 

  4. S. Karadas, S. Altındal Yerişkin, M. Balbaşı, Y. Azizian-Kalandaragh, Complex dielectric, complex electric modulus, and electrical conductivity, in Al/(Graphene-PVA)/p-Si (metal-polymer-semiconductor) structures. J. Phys. Chem. Solids 148, 109740 (2021)

    Article  CAS  Google Scholar 

  5. S. Alptekin, A. Tataroğlu, Ş Altındal, Dielectric modulus and conductivity study of Au/PVP/n-Si (MPS) structure in the wide range of frequency and voltage at room temperature. J. Mater. Sci.: Mater. Electron. 30, 6853–6859 (2019)

    CAS  Google Scholar 

  6. V. Rajagopal Reddy, C. Venkata Prasad, Surface chemical states, electrical and carrier transport properties of Au/ZrO2/n-GaN MIS junction with a high-k ZrO2 as an insulating layer. Mater. Sci. Eng. B 231, 74–80 (2018)

    Article  CAS  Google Scholar 

  7. M.S.P. Reddy, H.S. Kang, J.H. Lee, V.R. Reddy, J.S. Jang, Electrical properties and the role of inhomogeneities at the polyvinyl alcohol/n-inp schottky barrier interface. J. Appl. Polym. Sci. 131, 39773 (2014)

    Google Scholar 

  8. H.C. Card, E.H. Rhoderick, Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J. Phys. D 4, 1589 (1971)

    Article  CAS  Google Scholar 

  9. M. Sharma, S.K. Tripathi, Frequency and voltage dependence of admittance characteristics of Al/Al2O3/PVA:n-ZnSe Schottky barrier diodes. Mater. Sci. Semicond. Process. 41, 155–161 (2016)

    Article  CAS  Google Scholar 

  10. B.L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications (Plenum Press, New York, 1984)

    Book  Google Scholar 

  11. P. Chattopadhyay, The effect of shunt resistance on the electrical characteristics of Schottky barrier diodes. J. Phys. Appl. Phys. 29, 823–829 (1996)

    Article  CAS  Google Scholar 

  12. A.M. Akbaş, A. Tataroğlu, Ş Altındal, Y. Azizian-Kalandaragh, Frequency dependence of the dielectric properties of Au/(NG:PVP)/n-Si structures. J. Mater. Sci.: Mater. Electron. 32, 7657–7670 (2021)

    Google Scholar 

  13. Ö. Sevgili, İ Taşcıoğlu, S. Boughdachi, Y. Azizian-Kalandaragh, Ş Altındal, Examination of dielectric response of Au/HgS-PVA/n-Si (MPS) structure by impedance spectroscopy method. Phys. B 566, 125–135 (2019)

    Article  CAS  Google Scholar 

  14. C.V. Subba Reddy, X. Han, Q.-Y. Zhu, L.-Q. Mai, W. Chen, Dielectric spectroscopy studies on (PVP+PVA) polyblend film. Microelectron. Eng. 83, 281–285 (2006)

    Article  CAS  Google Scholar 

  15. Y. Azizian-Kalandaragh, İ Yücedağ, G. Ersöz Demir, Ş Altındal, Investigation of the variation of dielectric properties by applying frequency and voltage to Al/(CdS-PVA)/p-Si structures. J. Mol. Struct. 1224, 129325 (2021)

    Article  CAS  Google Scholar 

  16. S. Altındal Yerişkin, M. Balbaşı, A. Tataroğlu, Frequency and voltage dependence of dielectric properties, complex electric modulus, and electrical conductivity in Au/7% graphene doped-PVA/n-Si (MPS) structures. J. Appl. Polym. Sci. 133(33), 43827 (2016)

    Article  CAS  Google Scholar 

  17. N. Karaoğlan, H. uslu Tecimer, Ş Altındal, C. Bindal, Dielectric characterization of BSA doped-PANİ interlayered metal-semiconductor structures. J. Mater. Sci.: Mater. Electron. 30, 14224–14232 (2019)

    Google Scholar 

  18. H.G. Çetinkaya, Frequency and voltage dependent profile of dielectric parameters and electric modulus for Al/(HgS-PVA)/p-Si capacitor via impedance Spectroscopy method. J. Nanoelectron. Optoelectron. 13, 421–427 (2018)

    Article  Google Scholar 

  19. L.L. Hench, J.L. West, Principles of Electronic Cremaics (Willey, New York, 1990)

    Google Scholar 

  20. M. Mümtaz, N.A. Khan, Dielectric properties of Cu0.5Tl0.5Ba2Ca3Cu4O12-δ bulk superconductor. Phys. C 469(13), 728–731 (2009)

    Article  CAS  Google Scholar 

  21. C.P. Symth, Dielectric Behaviour and Structure (McGraw-Hill, New York, 1995)

    Google Scholar 

  22. A. Chelkowski, Dielectric Physics (Elsevier, Amsterdam, 1980)

    Google Scholar 

  23. H.N. Chandrakala, B. Ramaraj, Shivakumaraiah, G.M. Madhu, Siddaramaiah, The influence of zinc oxide–cerium oxide nanoparticles on the structural characteristics and electrical properties of polyvinyl alcohol films. J. Mater. Sci.: Mater. Electron. 47, 8076–8084 (2012)

    Article  CAS  Google Scholar 

  24. A. Kyritsis, P. Pissis, J. Grammatikakis, Dielectric relaxation spectroscopy in poly (hydroxyethyl acrylates)/water hydrogels. J. Polym. Sci. B 33, 1737–1750 (1995)

    Article  CAS  Google Scholar 

  25. M. Ulusoy, Ş Altındal, P. Durmuş, S. Özçelik, Y. Azizian-Kalandaragh, Frequency and voltage-dependent electrical parameters, interface traps, and series resistance profile of Au/(NiS: PVP)/n-Si structures. J. Mater. Sci.: Mater. Electron. 32, 13693–13707 (2021)

    CAS  Google Scholar 

  26. N. Rajeswari, S. Selvasekarapandian, S. Karthikeyan, M. Prabu, G. Hirankumar, H. Nithya, C. Sanjeeviraja, Conductivity and dielectric properties of polyvinyl alcohol–polyvinylpyrrolidone poly blend film using non-aqueous medium. J. Non-Cryst. Solids 357, 3751–3756 (2011)

    Article  CAS  Google Scholar 

  27. P.B. Macedo, C.T. Moyniham, R. Bose, The role of ionic diffusion in polarisation in vitreous ionic conductors. Phys. Chem. Glasses 13, 171–179 (1972)

    CAS  Google Scholar 

  28. N.G. McCrum, B.E. Read, G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Wiley, London, 1967)

    Google Scholar 

  29. A.A. Sattar, S.A. Rahman, Dielectric properties of rare earth substituted Cu-Zn ferrites. Phys. Status Solidi 200(2), 415–422 (2003)

    Article  CAS  Google Scholar 

  30. Y.Ş Asar, T. Asar, Ş Altındal, Investigation of dielectric relaxation and ac electrical conductivity using impedance spectroscopy method in (AuZn)/TiO2/p-GaAs (110) Schottky barrier diodes. J. Alloys Compd. 628, 442–449 (2015)

    Article  CAS  Google Scholar 

  31. İ Taşçıoğlu, Ö. Sevgili, Y. Azizian-Kalandaragh, Ş Altındal, Frequency-dependent admittance analysis of Au/n-Si structure with CoSO4-PVP interfacial layer. J. Electron. Mater. 49, 3720–3727 (2020)

    Article  CAS  Google Scholar 

  32. İ Taşçıoğlu, S.O. Tan, Ş Altındal, Frequency, voltage and illumination interaction with the electrical characteristic of the CdZnO interlayered Schottky structure. J. Mater. Sci.: Mater. Electron. 30, 11536–11541 (2019)

    Google Scholar 

  33. Ö. Sevgili, İ Taşçıoğlu, S. Boughdachi, Y. Azizian-Kalandaragh, Ş Altındal, Examination of dielectric response of Au/HgS-PVA/n-Si (MPS) structure by impedance spectroscopy method. Phys. B 566, 125–135 (2019)

    Article  CAS  Google Scholar 

  34. H. Tecimer, On the frequency–voltage dependent electrical and dielectric profiles of the Al/(Zn-PVA)/p-Si structures. J. Mater. Sci.: Mater. Electron. 29, 20141–20145 (2018)

    CAS  Google Scholar 

  35. E. Arslan, Y. Asar, İ Taşçıoğlu, H. Uslu, E. Özbay, Frequency and temperature dependence of the dielectric and AC electrical conductivity in (Ni/Au)/AlGaN/AlN/GaN heterostructures. Microelectron. Eng. 87, 1997–2001 (2010)

    Article  CAS  Google Scholar 

  36. T. Tunç, H. Uslu, Ş Altındal, Preparation and dielectric properties of polyvinyl alcohol (Co, Zn Acetate) Fiber/n-Si and polyvinyl alcohol (Ni, Zn Acetate)/n-Si Schottky diodes. Fibers Polym. 12, 886 (2011)

    Article  CAS  Google Scholar 

  37. S.O. Tan, Identification of the frequency- and voltage-dependent dielectric characterization of metal-Zn/PVA semiconductor structures. IEEE Trans. Nanotechnol. 18, 432–436 (2019)

    Article  CAS  Google Scholar 

  38. F. Gaâbel, M. Khlifi, N. Hamdaoui, K. Taibi, J. Dhahri, Conduction mechanisms study CaCu2.8Ni0.2Ti4O12 ceramics sintered at different temperatures. J. Alloys Compd. 828, 154373 (2020)

    Article  CAS  Google Scholar 

  39. M. Jebli, Ch. Rayssi, N. Hamdaoui, S. Rabaoui, J. Dhahri, M. Ben Henda, I. Shaarany, Effect of Nb-doping on the structural and electrical properties of Ba0.97La0.02Ti1xNb4x/5O3 ceramics at room temperature synthesized by molten-salt method. J. Alloys Compd. 784, 204–212 (2019)

    Article  CAS  Google Scholar 

  40. M. Hsini, N. Hamdaoui, S. Hcini, M. Lamjed Bouazizi, S. Zemni, L. Beji, Effect of iron doping at Mn-site on complex impedance spectroscopy properties of Nd0.67Ba0.33MnO3 perovskite. Phase Transit. 91(3), 316–331 (2017)

    Article  CAS  Google Scholar 

  41. S.O. Tan, Identification of the frequency and voltage-dependent dielectric characterization of metal-Zn/PVA semiconductor structures. IEEE Trans. Nanotechnol. 18, 432–436 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Gazi University Scientific Research Project. (Project Number: GU-BAP.05/2019-26).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ş. Altındal or M. Ulusoy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altındal, Ş., Ulusoy, M., Özçelik, S. et al. On the frequency-dependent complex-dielectric, complex-electric modulus and conductivity in Au/(NiS:PVP)/n-Si structures. J Mater Sci: Mater Electron 32, 20071–20081 (2021). https://doi.org/10.1007/s10854-021-06419-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06419-y

Navigation