Skip to main content

Advertisement

Log in

Pressureless sinter joining of bare Cu substrates under forming gas atmosphere by surface-oxidized submicron Cu particles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Pressureless sinter joining of bare Cu substrates using submicron Cu particles was successfully achieved at 250–300 °C in N2–3%H2 forming gas atmosphere via the in-situ generation of Cu nanoparticles reduced from a thin oxide layer present on the surface of Cu particles. The joining strength of the Cu joints at 300 °C reached 26.2 MPa in the forming gas atmosphere, while it was 7.4 MPa under N2 gas atmosphere. Thermogravimetry–differential thermal analysis and X-ray diffraction showed that the natural oxide layer (Cu2O) started to reduce to Cu at approximately 220 °C only under the N2–H2 gas atmosphere. Cu sintering progressed rapidly above the reduction temperature, and the joining strength improved with increasing temperature. Transmission electron microscopy demonstrated the generation of Cu nanoparticles around the submicron Cu particles and the subsequent promotion of sintering behavior. These results suggest that reduction of the initially present oxide layer on submicron Cu particles is crucial for pressureless sinter joining. Based on the reduction and sintering behavior of submicron Cu particles, pressureless sinter joining was realized at 250 °C by increasing the holding time, and the joining strength was > 18 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. P.G. Neudeck, R.S. Okojie, L.-Y. Chen, High-temperature electronics - a role for wide bandgap semiconductors? Proc. IEEE 90(6), 1065–1076 (2002). https://doi.org/10.1109/JPROC.2002.1021571

    Article  Google Scholar 

  2. S.-H. Ryu, S. Krishnaswami, M. O’Loughlin, J. Richmond, A. Agarwal, J. Palmour, A.R. Hefner, 10-kV, 123-mΩcm2 4H-SiC power DMOSFETs. IEEE Electron Device Lett. 25(8), 556–558 (2004). https://doi.org/10.1109/LED.2004.832122

    Article  CAS  Google Scholar 

  3. M. Kasu, K. Ueda, H. Kageshima, Y. Taniyasu, Phys. Stat. Sol. c 5, 3165–3168 (2008). https://doi.org/10.1002/pssc.200779313

    Article  CAS  Google Scholar 

  4. T. Funaki, J.C. Balda, J. Junghans, Power Conversion With SiC Devices at Extremely High Ambient Temperatures. IEEE Trans. Power Electron. 22(4), 1321–1329 (2007). https://doi.org/10.1109/TPEL.2007.900561

    Article  Google Scholar 

  5. Y. Mikamura, K. Hiratsuka, T. Tsuno, H. Michikoshi, S. Tanaka, T. Masuda, K. Wada, T. Horii, J. Genba, T. Hiyoshi, Novel designed SiC devices for high power and high efficiency systems. IEEE Trans. Electron Devices 62(2), 382–389 (2015). https://doi.org/10.1109/TED.2014.2362537

    Article  CAS  Google Scholar 

  6. H.S. Chin, K.Y. Cheong, A.B. Ismail, A review on die attach materials for sic-based high-temperature power devices. Metall. Mater. Trans. B 41, 824–832 (2010). https://doi.org/10.1007/s11663-010-9365-5

    Article  CAS  Google Scholar 

  7. V.R. Manikam, K.Y. Cheong, Die attach materials for high temperature applications: A review. IEEE Trans. Compon. Packag. Manuf. Technol. 1(4), 457–478 (2011). https://doi.org/10.1109/TCPMT.2010.2100432

    Article  CAS  Google Scholar 

  8. E. Ide, S. Angata, A. Hirose, K.F. Kobayashi, Metal-metal bonding process using Ag metallo-organic nanoparticle. Acta Mater. 53(8), 2385–2393 (2005). https://doi.org/10.1016/j.actamat.2005.01.047

    Article  CAS  Google Scholar 

  9. J. Li, C.M. Johnson, C. Buttay, W. Sabbah, S. Azzopardi, Bonding strength of multiples SiC die attachment prepared by sintering of Ag nanoparticles. Journal of Material of Materials Processing Technology 21, 299–308 (2015). https://doi.org/10.1016/j.jmatprotec.2014.08.002

    Article  CAS  Google Scholar 

  10. S.L. Lai, J.Y. Guo, V. Petrova, G. Ramanath, L.H. Allen, Size-dependent melting properties of small Tin particles: nanocalorimetric measurements. Phys. Rev. Lett. 77(1), 99–102 (1996). https://doi.org/10.1103/PhysRevLett.77.99

    Article  CAS  Google Scholar 

  11. P. Peng, A. Hu, A.P. Gerlich, G. Zou, L. Liu, Y. Norman Zhou, Joining of silver nanomaterials at low temperatures: Processes, properties, and applications. ACS Appl. Mater. Interfaces 7(23), 12597–12618 (2015). https://doi.org/10.1021/acsami.5b02134

    Article  CAS  Google Scholar 

  12. C.-J. Lee, D.-G. Kang, B.-U. Hwang, K.D. Min, J. Joo, S.-B. Jung, Fabrication of an IPL-sintered Cu circuit and its electrochemical migration behavior. J. Alloy. Compd. 863, 158726 (2021). https://doi.org/10.1016/j.jallcom.2021.158726

    Article  CAS  Google Scholar 

  13. W. Li, L. Li, Y. Gao, D. Hu, C.-F. Li, H. Zhang, J. Jiu, S. Nagao, K. Suganuma, Highly conductive copper films based on submicron copper particles/copper complex inks for printed electronics: Microstructure, resistivity, oxidation resistance, and long-term stability. J. Alloy. Compd. 732, 240–247 (2018). https://doi.org/10.1016/j.jallcom.2017.10.193

    Article  CAS  Google Scholar 

  14. Z. Zhang, C. Chen, Y. Yang, H. Zhang, D. Kim, T. Sugahara, S. Nagao, K. Suganuma, Low-temperature and pressureless sinter joining of Cu with micron/submicron Ag particle paste in air. J. Alloy. Compd. 780, 435–442 (2019). https://doi.org/10.1016/j.jallcom.2018.11.251

    Article  CAS  Google Scholar 

  15. T. Matsuda, S. Yamada, A. Takeuchi, K. Uesugi, M. Yasutake, T. Sano, M. Ohata, A. Hirose, Fracture behavior of thermally aged Ag-Cu composite sinter joint through microscale tensile test coupled with nano X-ray computed tomography. Mater. Des. 206, 109818 (2021). https://doi.org/10.1016/j.matdes.2021.109818

    Article  CAS  Google Scholar 

  16. X. Liu, H. Nishikawa, Low-pressure Cu-Cu bonding using in-situ surface-modified microscale Cu particles for power device packaging. Scr. Mater. 120, 80–84 (2016). https://doi.org/10.1016/j.scriptamat.2016.04.018

    Article  CAS  Google Scholar 

  17. T. Fujimoto, T. Ogura, T. Sano, M. Takahashi, A. Hirose, Joining of pure copper using Cu nanoparticles derived from CuO paste. Mater. Trans. 56(7), 992–996 (2015). https://doi.org/10.2320/matertrans.MI201410

    Article  CAS  Google Scholar 

  18. T. Yao, T. Matsuda, T. Sano, C. Morikawa, A. Ohbuchi, H. Yashiro, A. Hirose, In situ study of reduction process of CuO paste and its effect on bondability of Cu-to-Cu joints. J. Electron. Mater. 47, 2193–2197 (2018). https://doi.org/10.1007/s11664-017-6049-9

    Article  CAS  Google Scholar 

  19. A. Hirose, H. Tatsumi, N. Takeda, Y. Akada, T. Ogura, E. Ide, T. Morita, J. Phys. 165, 012074 (2009). https://doi.org/10.1088/1742-6596/165/1/012074

    Article  CAS  Google Scholar 

  20. R. Gao, S. He, Y.-A. Shen, H. Nishikawa, Effect of substrates on fracture mechanism and process optimization of oxidation-reduction bonding with copper microparticles. J. Electron. Mater. 48, 2263–2271 (2019). https://doi.org/10.1007/s11664-019-07046-4

    Article  CAS  Google Scholar 

  21. R. Gao, S. He, J. Li, Y.-A. Shen, H. Nishikawa, Interfacial transformation of preoxidized Cu microparticles in a formic-acid atmosphere for pressureless Cu-Cu bonding, J. Mater. Sci.: Mater. Electron. 31, 14635–14644 (2020). https://doi.org/10.1007/s10854-020-04026-x

    Article  CAS  Google Scholar 

  22. Y. Gao, H. Zhang, W. Li, J. Jiu, S. Nagao, T. Sugahara, K. Suganuma, Die bonding performance using bimodal Cu particle paste under different sintering atmospheres. J. Electron. Mater. 46, 4575–4581 (2017). https://doi.org/10.1007/s11664-017-5464-2

    Article  CAS  Google Scholar 

  23. T. Maeda, Y. Kobayashi, Y. Yasuda, T. Morita, Metal-metal bonding process using copper oxide nanoparticles. Sci. Technol. Weld. Join. 17(7), 556–563 (2012). https://doi.org/10.1179/1362171812Y.0000000047

    Article  CAS  Google Scholar 

  24. D. Ishikawa, H. Nakako, Y. Kawana, C. Sugama, M. Negishi, Y. Ejiri, Bondability evaluation of pressureless sintering copper die-bonding paste. Trans. JIEP 21(3), 224–233 (2018). https://doi.org/10.5104/jiep.21.224

    Article  CAS  Google Scholar 

  25. H. Zhang, Y. Gao, J. Jiu, K. Suganuma, In situ bridging effect of Ag2O on pressureless and low-temperature sintering of micron-scale silver paste. J. Alloy. Compd. 696, 123–129 (2017). https://doi.org/10.1016/j.jallcom.2016.11.225

    Article  CAS  Google Scholar 

  26. T. Matsuda, K. Inami, K. Motoyama, T. Sano, A. Hirose, Silver oxide decomposition mediated direct bonding of silicon-based materials. Sci. Rep. 8, 10472 (2018). https://doi.org/10.1038/s41598-018-28788-x

    Article  CAS  Google Scholar 

  27. X. Jiang, T. Herricks, Y. Xia, CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air. Nano Lett. 2(12), 1333–1338 (2002). https://doi.org/10.1021/nl0257519

    Article  CAS  Google Scholar 

  28. C.J. Love, J.D. Smith, Y. Cui, K.K. Varanasi, Size-dependent thermal oxidation of copper: single-step synthesis of hierarchical nanostructures. Nanoscale 3(12), 4972–4976 (2011). https://doi.org/10.1039/C1NR10993F

    Article  CAS  Google Scholar 

  29. C. Chen, K. Suganuma, T. Iwashige, K. Tsuruta, High-temperature reliability of sintered microporous Ag on electroplated Ag, Au, and sputtered Ag metallization substrates. J. Mater. Sci.: Mater. Electron. 29(3), 1785–1797 (2018). https://doi.org/10.1007/s10854-017-8087-8

    Article  CAS  Google Scholar 

  30. S. Sakamoto, S. Nagao, K. Suganuma, Thermal fatigue of Ag flake sintering die-attachment for Si/SiC power devices. J. Mater. Sci.: Mater. Electron. 24(7), 2593–2601 (2013). https://doi.org/10.1007/s10854-013-1138-x

    Article  CAS  Google Scholar 

  31. J.A. Rodriguez, J.Y. Kim, J.C. Hanson, M. Pérez, A.I. Frenkel, Reduction of CuO in H2: in situ time-resolved XRD studies. Catal. Lett. 85(3–4), 247–255 (2003). https://doi.org/10.1023/A:1022110200942

    Article  CAS  Google Scholar 

  32. J.Y. Kim, J.A. Rodriguez, J.C. Hanson, A.I. Frenkel, P.L. Lee, Reduction of CuO and Cu2O with H2: H Embedding and Kinetic Effects in the Formation of Suboxides. J. Am. Chem. Soc. 125(35), 10684–10692 (2003). https://doi.org/10.1021/ja0301673

    Article  CAS  Google Scholar 

  33. R. Kas, R. Kortlever, A. Milbrat, M.T.M. Koper, G. Mul, J. Baltrusaitis, Electrochemical CO2 reduction on Cu2O-derived copper nanoparticles: controlling the catalytic selectivity of hydrocarcons. Phys. Chem. Chem. Phys. 16(24), 12194–12201 (2014). https://doi.org/10.1039/C4CP01520G

    Article  CAS  Google Scholar 

  34. R.D. Glover, J.M. Miller, J.E. Hutchisoin, Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. ACS Nano 5(11), 8950–8957 (2011). https://doi.org/10.1021/nn2031319

    Article  CAS  Google Scholar 

  35. H. Nishikawa, T. Hirano, T. Takemoto, N. Terada, Effects of joining conditions on joint strength of Cu/Cu Joint Using Cu nanoparticle paste. Open Surf Sci J. 3, 60–64 (2011). https://doi.org/10.2174/1876531901103010060

    Article  CAS  Google Scholar 

  36. J. Yan, G. Zou, A. Wu, J. Ren, J. Yan, A. Hu, Y. Zhou, Pressureless bonding process using Ag nanoparticle paste for flexible electronics packaging. Scr. Mater. 66(8), 582–585 (2012). https://doi.org/10.1016/j.scriptamat.2012.01.007

    Article  CAS  Google Scholar 

  37. T. Yonezawa, H. Tsukamoto, M. Matsubara, Low-temperature nanoredox two-step sintering of gelatin nanoskin-stabilized submicrometer-sized copper fine particles for preparing highly conductive layers. RSC Adv. 5, 61290–61297 (2015). https://doi.org/10.1039/C5RA06599B

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoki Matsuda.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamagiwa, D., Matsuda, T., Furusawa, H. et al. Pressureless sinter joining of bare Cu substrates under forming gas atmosphere by surface-oxidized submicron Cu particles. J Mater Sci: Mater Electron 32, 19031–19041 (2021). https://doi.org/10.1007/s10854-021-06418-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06418-z

Navigation