Skip to main content
Log in

Facile synthesis of porous waist drum-like α-Fe2O3 nanocrystals as electrode materials for supercapacitor application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we first report the facile synthesis of porous waist drum-like α-Fe2O3 nanocrystals in high yield by hydrothermal method for supercapacitor application. The as-prepared porous waist drum-like α-Fe2O3 nanocrystals have an equatorial diameter of 100–130 nm and length of 150–200 nm, which are self-assembled by numerous nanoparticles. The formation mechanism of the porous waist drum-like α-Fe2O3 nanocrystals was proposed according to a series of time-dependent experiments. The specific surface area and pore size of the porous waist drum-like α-Fe2O3 nanocrystals were measured to be 28.6 m2 g−1 and 1.7 nm, respectively. Electrochemical measurements indicate that the porous waist drum-like α-Fe2O3 nanocrystals electrode exhibits noticeable pseudocapacitive properties with a high specific capacitance up to 234 F g−1 at 2 A g−1 as well as good cycling stability and high capacitance retention of 84.6% after 2000 charge–discharge cycles. The excellent pseudocapacitive performance could be due to the unique nanostructure of the porous waist drum-like α-Fe2O3 nanocrystals, which can provide fast ion/electron transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7(11), 845–854 (2008). https://doi.org/10.1038/nmat2297

    Article  CAS  Google Scholar 

  2. J. Li, Y.W. Wang, W.N. Xu, Y. Wang, B. Zhang, S. Luo, X.Y. Zhou, C.L. Zhang, X. Gu, C.G. Hu, Porous Fe2O3 nanospheres anchored on activated carbon cloth for high-performance symmetric supercapacitors. Nano Energy 57, 379–387 (2008). https://doi.org/10.1016/j.nanoen.2018.12.061

    Article  CAS  Google Scholar 

  3. Y. Li, J. Xu, T. Feng, Q.F. Yao, J.P. Xie, H. Xia, Fe2O3 nanoneedles on ultrafine nickel nanotube arrays as efficient anode for high-performance asymmetric supercapacitors. Adv. Funct. Mater. 27(14), 1606728 (2017). https://doi.org/10.1002/adfm.201606728

    Article  CAS  Google Scholar 

  4. X. Meng, Y.Q. Liu, G.H. Han, W.W. Yang, Y.S. Yu, Three-dimensional (Fe3O4/ZnO)@C Double-core@shell porous nanocomposites with enhanced broadband microwave absorption. Carbon 162, 356–364 (2020). https://doi.org/10.1016/j.carbon.2020.02.035

    Article  CAS  Google Scholar 

  5. S.Y. Bao, W.W. Yang, Y.J. Wang, Y.S. Yu, Y.Y. Sun, Highly efficient and ultrafast removal of Cr(VI) in aqueous solution to ppb level by poly(allylamine hydrochloride) covalently cross-linked amino-modified graphene oxide. J. Hazard. Mater. 409, 124470 (2021). https://doi.org/10.1016/j.jhazmat.2020.124470

    Article  CAS  Google Scholar 

  6. Y.R. Huang, M.G. Li, W.W. Yang, Y.S. Yu, S. Hao, 3D ordered mesoporous cobalt ferrite phosphides for overall water splitting. Sci. China Mater. 63, 240–248 (2020). https://doi.org/10.1007/s40843-019-1171-3

    Article  CAS  Google Scholar 

  7. F.Y. Tian, S. Feng, L. He, Y.R. Huang, A. Fauzi, W.W. Yang, Y.Q. Liu, Y.S. Yu, Interface engineering: PSS-PPy wrapping amorphous Ni-Co-P for enhancing neutral-pH hydrogen evolution reaction performance. Chem. Eng. J. 417, 129232 (2021). https://doi.org/10.1016/j.cej.2021.129232

    Article  CAS  Google Scholar 

  8. R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors. Electrochim. Acta 45(15–16), 2483–2498 (2000). https://doi.org/10.1016/S0013-4686(00)00354-6

    Article  CAS  Google Scholar 

  9. J.R. Miller, P. Simon, Materials science. Electrochemical capacitors for energy management. Science 321(5889), 651–652 (2008). https://doi.org/10.1126/science.1158736

    Article  CAS  Google Scholar 

  10. L.T. Lam, R. Louey, Development of ultra-battery for hybrid-electric vehicle applications. J. Power Sources 158(2), 1140–1148 (2006). https://doi.org/10.1016/j.jpowsour.2006.03.022

    Article  CAS  Google Scholar 

  11. F.F. Han, J. Xu, J. Tang, W.H. Tang, Oxygen vacancy-engineered Fe2O3 nanoarrays as free-standing electrodes for flexible asymmetric supercapacitors. Nanoscale 11, 12477–12483 (2019). https://doi.org/10.1039/C9NR04023D

    Article  CAS  Google Scholar 

  12. L. Ting, Y. Hang, Z. Lei, W.L. Zhang, Facile electrochemical fabrication of porous Fe2O3 nanosheets for flexible asymmetric supercapacitor. J. Phys. Chem. C 121, 18982–18991 (2017). https://doi.org/10.1021/acs.jpcc.7b04330

    Article  CAS  Google Scholar 

  13. P.H. Yang, Y. Ding, Z.Y. Lin, Z.W. Chen, Y.Z. Li, P.F. Qiang, M. Ebrahimi, W.J. Mai, C.P. Wong, Z.L. Wang, Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 14(2), 731–736 (2014). https://doi.org/10.1021/nl404008e

    Article  CAS  Google Scholar 

  14. C.L. Long, L.L. Jiang, T. Wei, J. Yan, Z.J. Fan, High-performance asymmetric supercapacitors with lithium intercalation reaction using metal oxide-based composites as electrode materials. J. Mater. Chem. A 2(39), 16678–16686 (2014). https://doi.org/10.1039/C4TA03241A

    Article  CAS  Google Scholar 

  15. H. Xia, C.Y. Hong, B. Li, B. Zhao, Z.X. Lin, M.B. Zheng, Facile synthesis of hematite quantum-dot/functionalized graphene-sheet composites as advanced anode materials for asymmetric supercapacitors. Adv. Funct. Mater. 25(4), 627–635 (2015). https://doi.org/10.1002/adfm.201403554

    Article  CAS  Google Scholar 

  16. H.Y. Quan, B.C. Cheng, Y.H. Xiao, S.J. Lei, One-pot synthesis of α-Fe2O3 nanoplates-reduced grapheme oxide composites for supercapacitor application. Chem. Eng. J. 286, 165–173 (2016). https://doi.org/10.1016/j.cej.2015.10.068

    Article  CAS  Google Scholar 

  17. S. Shivakumara, T.R. Penki, N. Munichandraiah, High specific surface area α-Fe2O3 nanostructures as high performance electrode material for supercapacitors. Mater. Lett. 131, 100–103 (2014). https://doi.org/10.1016/j.matlet.2014.05.160

    Article  CAS  Google Scholar 

  18. J. Chen, K.L. Huang, S.Q. Liu, Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor. Electrochim. Acta 55(1), 1–5 (2009). https://doi.org/10.1016/j.electacta.2009.04.017

    Article  CAS  Google Scholar 

  19. K.K. Lee, S. Deng, H.M. Fan, S. Mhaisalkar, H.R. Tan, E.S. Tok, K.P. Loh, W.S. Chin, C.H. Sow, α-Fe2O3 nanotubes-reduced grapheme oxide composites as synergistic electrochemical capacitor materials. Nanoscale 4(9), 2958 (2012). https://doi.org/10.1039/C2NR11902A

    Article  CAS  Google Scholar 

  20. R.Z. Li, X. Ren, F. Zhang, C. Du, J.P. Liu, Synthesis of Fe3O4@SnO2 core-shell nanorod film and its application as a thin-film supercapacitor electrode. Chem. Commun. 48(41), 5010–5012 (2012). https://doi.org/10.1039/C2CC31786A

    Article  CAS  Google Scholar 

  21. P.M. Hallam, M. Gomez-Mingot, D.K. Kampouris, C.E. Banks, Facile synthetic fabrication of iron oxide particles and novel hydrogen superoxide supercapacitors. RSC Adv. 2(16), 6672–6679 (2012). https://doi.org/10.1039/c2ra01139e

    Article  CAS  Google Scholar 

  22. Y. Liu, Y. Jiao, B.S. Yin, S.W. Zhang, F.Y. Qu, X. Wu, Hydrothermal synthesis and photocatalytic performance of uniform α-Fe2O3 nanocubes. J Nanosci. Nanotechnol. 14(9), 7211–7214 (2014). https://doi.org/10.1166/jnn.2014.9215

    Article  CAS  Google Scholar 

  23. A. Mirzaei, K. Janghorban, B. Hashemi, M. Bonyani, S.G. Leonardi, G. Neri, Highly stable and selective ethanol sensor based on α-Fe2O3 nanoparticles prepared by pechini sol-gel method. Ceram. Int. 42, 6136–6144 (2016). https://doi.org/10.1016/j.ceramint.2015.12.176

    Article  CAS  Google Scholar 

  24. T. Li, H. Yu, L. Zhi, W.L. Zhang, Z.B. Lei, Facile electrochemical fabrication of porous Fe2O3 nanosheets for flexible asymmetric supercapacitors. J. Phys. Chem. C 121, 18982–18991 (2017). https://doi.org/10.1021/acs.jpcc.7b04330

    Article  CAS  Google Scholar 

  25. L. Vayssieres, C. Sathe, S. Butorin, D.K. Shuh, One-dimensional quantum-confinement effect in α-Fe2O3 ultrafine nanorod arrays. Adv. Mater. 17, 2320–2323 (2005). https://doi.org/10.3934/dcds.2003.9.549

    Article  CAS  Google Scholar 

  26. L.S. Li, Y.H. Yu, F. Meng, Y.Z. Tan, R.J. Hamers, S. Jin, Facile solution synthesis of α-FeF3·3H2O nanowires and their conversion to α-Fe2O3 nanowires for photoelectrochemical application. Nano Lett. 12(2), 724–731 (2012). https://doi.org/10.1021/nl2036854

    Article  CAS  Google Scholar 

  27. P.H. Yang, Y. Ding, Z.Y. Lin, Z.W. Chen, Z.L. Wang, Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett. 14(2), 731–736 (2014). https://doi.org/10.1021/nl404008e

    Article  CAS  Google Scholar 

  28. P.H. Zhao, G. Wang, B.Z. Yu, X.J. Li, J.T. Bai, Z.Y. Ren, Facile hydrothermal fabrication of nitrogen-doped graphene-Fe2O3 composites as high performance electrode materials for supercapacitor. J. Alloys Compd. 604, 87–93 (2014). https://doi.org/10.1016/j.jallcom.2014.03.106

    Article  CAS  Google Scholar 

  29. Q. Tang, W. Wang, G. Wang, The perfect matching between the low-cost Fe2O3 nanowire anode and the NiO nanoflake cathode significantly enhances the energy density of asymmetric supercapacitors. J. Mater. Chem. A 3(12), 6662–6670 (2015). https://doi.org/10.1039/C5TA00328H

    Article  CAS  Google Scholar 

  30. X.J. Yang, H.M. Sun, L.S. Zhang, L.J. Zhao, J.S. Lian, Q. Jiang, High efficient photo-Fenton catalyst of α-Fe2O3/MoS2 hierarchical nanoheterostructures: reutilization for supercapacitors. Sci. Rep. 6, 31591 (2016). https://doi.org/10.1038/srep31591

    Article  CAS  Google Scholar 

  31. X.H. Lu, Y.X. Zeng, M.H. Yu, T. Zhai, C.L. Liang, S.L. Xie, M.-S. Balogun, Y.X. Tong, Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv. Mater. 26(19), 3148–3155 (2014). https://doi.org/10.1002/adma.201305851

    Article  CAS  Google Scholar 

  32. Y. Li, Q. Li, H.J. Wu, C.Z. Huang, H. Lin, L.Z. Qin, Aqueous-solution synthesis of uniform PbS nanocubes and their optical properties. J. Nanopart. Res. 17(9), 362 (2015). https://doi.org/10.1007/s11051-015-3169-0

    Article  CAS  Google Scholar 

  33. C. Frandsen, B.A. Legg, L.R. Comolli et al., Aggregation-induced growth and transformation of β-FeOOH nanorods to micron-sized α-Fe2O3 spindles. CrystEngComm 16, 1451–1458 (2014). https://doi.org/10.1039/c3ce40983j

    Article  CAS  Google Scholar 

  34. M.F. Zhang, H. Fan, B.J. Xi, X.Y. Wang, C. Dong, Y.T. Qian, Synthesis, characterization, and luminescence properties of uniform Ln3+-doped YF3. J. Phys. Chem. C 111(18), 6652–6657 (2007). https://doi.org/10.1021/jp068919d

    Article  CAS  Google Scholar 

  35. G.Z. Shen, D. Chen, K.B. Tang, X.M. Liu, L.Y. Huang, Y.T. Qian, General synthesis of metal sulfides nanocrystallines via a simple polyol route. J. Solid State Chem. 173(1), 232–235 (2003). https://doi.org/10.1016/s0022-4596(03)00031-8

    Article  CAS  Google Scholar 

  36. F. Huang, H.Z. Zhang, J.F. Banfield, Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. Nano Lett. 3(3), 373–378 (2003). https://doi.org/10.1021/nl025836+

    Article  CAS  Google Scholar 

  37. R.L. Penn, Kinetics of oriented aggregation. J. Phys. Chem. B 108(34), 12707–12712 (2004). https://doi.org/10.1021/jp036490+

    Article  CAS  Google Scholar 

  38. E. Zhang, G.P. Hao, M.E. Casco, V. Bon, S. Grätz, L. Borchardt, Nanocasting in ball mills-combining ultra-hydrophilicity and ordered mesoporosity in carbon materials. J. Phys. Chem. A 6(3), 859–865 (2018). https://doi.org/10.1039/c7ta10783h

    Article  CAS  Google Scholar 

  39. J.C. Huang, S.N. Yang, Y. Xu et al., Fe2O3 sheets grown on nickel foam as electrode material for electrochemical capacitors. J. Electroanal. Chem. 713, 98–102 (2014). https://doi.org/10.1016/j.jelechem.2013.12.009

    Article  CAS  Google Scholar 

  40. Y.C. Xing, Synthesis and electrochemical characterization of uniformly-dispersed high loading Pt nanoparticles on sonochemically-treated carbon nanotubes. J. Phys. Chem. B 108(50), 19255–19259 (2004). https://doi.org/10.1021/jp046697i

    Article  CAS  Google Scholar 

  41. T.N. Timothy, C.A. Carlos, H. Bernadette, P. Lu, N.S. Bell, A. Ambrosini, T. Friedman, T.J. Boyle, D.R. Wheeler, D.L. Huber, Synthesis and characterization of titania-graphene nanocomposites. J. Phys. Chem. C 113(46), 19812–19823 (2009). https://doi.org/10.1021/jp905456f

    Article  CAS  Google Scholar 

  42. Y. Wang, M.M. Zhang, D.H. Pan, Y. Li, T.J. Ma, J.M. Xie, Nitrogen/sulfur co-doped grapheme networks uniformly coupled N-Fe2O3 nanoparticles achieving enhanced supercapacitor. Electrochim. Acta 266, 242–253 (2018). https://doi.org/10.1016/j.electacta.2018.02.040

    Article  CAS  Google Scholar 

  43. Z.X. Song, W. Liu, W.S. Wei, C.Z. Quan, N.X. Sun, Q. Zhou, G.C. Liu, X.Q. Wen, Preparation and electrochemical properties of Fe2O3/reduced graphene oxide aerogel (Fe2O3/rGOA) composites for supercapacitors. J. Alloys Compd. 685, 355–363 (2016). https://doi.org/10.1016/j.jallcom.2016.05.323

    Article  CAS  Google Scholar 

  44. N.K. Chaudhari, Cube-like α-Fe2O3 supported on ordered multimodal porous carbon as high performance electrode material for supercapacitors. Chemsuschem 7(11), 3102–3111 (2014). https://doi.org/10.1002/cssc.201402526

    Article  CAS  Google Scholar 

  45. Z.W. Nie, Y.P. Wang, Y.F. Zhang, A.Q. Pan, Multi-shelled α-Fe2O3 microspheres for high-rate supercapacitors. Sci. China Mater. 59(4), 247–253 (2016). https://doi.org/10.1007/s40843-016-5028-8

    Article  CAS  Google Scholar 

  46. Y.D. Dong, L. Xing, F. Hu, A. Umar, X. Wu, α-Fe2O3/rGO nanospindles as electrode materials for supercapacitors with long cycle life. Mater. Res. Bull. 107, 391–396 (2018). https://doi.org/10.1016/j.materresbull.2018.07.038

    Article  CAS  Google Scholar 

  47. X. Zheng, X.Q. Yan, Y.H. Sun, Y.S. Yu, G.J. Zhang, Y.W. Shen, Q.J. Liang, Q.L. Liao, Y. Zhang, Temperature-dependent electrochemical capacitive performance of the α-Fe2O3 hollow nanoshuttles as supercapacitor electrodes. J. Colloid Interface Sci. 466, 291–296 (2016). https://doi.org/10.1016/j.jcis.2015.12.024

    Article  CAS  Google Scholar 

  48. M.Y. Zhu, J.R. Kan, J.M. Pan, W.J. Tong, Q. Chen, J.C. Wang, One-pot hydrothermal fabrication of α-Fe2O3@C nanocomposites for electrochemical energy storage. J. Energy Chem. 28, 1–8 (2019). https://doi.org/10.1016/j.jechem.2017.09.021

    Article  Google Scholar 

  49. P.M. Padwal, S.L. Kadam, S.M. Mane, S.B. Kulkarni, Enhanced specific capacitance and supercapacitive properties of polyaniline-iron oxide (PANI-Fe2O3) composite electrode material. J. Mater. Sci. 51(23), 10499–10505 (2016). https://doi.org/10.1007/s10853-016-0270-4

    Article  CAS  Google Scholar 

  50. B.P. Prasanna, D.N. Avadhani, M.S. Raghu, K.K. Yogesh, Synthesis of polyaniline/α-Fe2O3 nanocomposite electrode material for supercapacitor applications. Mater. Today Commun. 12, 72–78 (2017). https://doi.org/10.1016/j.mtcomm.2017.07.002

    Article  CAS  Google Scholar 

  51. Y. Yang, L. Li, G.D. Ruan, H.L. Fei, C.S. Xiang, X.J. Fan, J.M. Tour, Hydrothermally formed three-dimensional nanoporous Ni(OH)2 thin-film supercapacitors. ACS Nano 8(9), 9622–9628 (2014). https://doi.org/10.1021/nn5040197

    Article  CAS  Google Scholar 

  52. C. Zheng, C. Cao, Z. Ali, J. Hou, Enhanced electrochemical performance of ball milled CoO for supercapacitor applications. J. Phys. Chem. A 2(39), 16467–16473 (2014). https://doi.org/10.1039/c4ta02885f

    Article  CAS  Google Scholar 

  53. Z.Y. Yu, X.Y. Zhang, L. Wei, X. Guo, MOF-derived porous hollow α-Fe2O3 microboxes modified by silver nanoclusters for enhanced pseudocapacitive storage. Appl. Surf. Sci. 463, 616–625 (2019). https://doi.org/10.1016/j.apsusc.2018.08.262

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the Fundamental Research Funds for the Central Universities (XDJK2019C086), the Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202001341, KJQN202001304, and KJZD-K202001305), the Natural Science Foundation of Chongqing (cstc2019jcyj-msxmX0670, cstc2019jcyj-msxmX0411, and cstc2020jcyj-msxmX0103), the Natural Science Foundation of Yongchuan (Ycstc2019nb0602), and Chongqing University Key Laboratory of Micro/Nano Materials Engineering and Technology (KFJJ2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Li.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Li, Y., Song, B. et al. Facile synthesis of porous waist drum-like α-Fe2O3 nanocrystals as electrode materials for supercapacitor application. J Mater Sci: Mater Electron 32, 18777–18789 (2021). https://doi.org/10.1007/s10854-021-06396-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06396-2

Navigation