Skip to main content
Log in

Electrospinning synthesis of Fe3O4/Eu(DBM)3phen/PVP multifunctional microfibers and their structure, luminescent and magnetic properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Multifunctional Fe3O4/Eu(DBM)3phen/PVP ((DBM: dibenzoylmethane, phen: 1,10-phenanthroline, PVP: polyvinyl pyrrolidone) microfibers were constructed by simple electrospinning process. The structure and morphology of the microfibers were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. The diameters of pure PVP microfibers and the microfibers doped only with Fe3O4 nanoparticles (NPs) were uniformly distributed, with an average diameter of about 360 nm. When 3% Eu(DBM)3phen complex and Fe3O4 NPs were both added to the precursor for electrospinning, the microfibers became very inhomogeneous in diameter. The photoluminescent properties of pure Eu(DBM)3phen complex and composite microfibers were also studied. The characteristic emission peaks of Eu3+ appeared in the composite microfibers. The intensities of emission and excitation spectra gradually decrease with adding more Fe3O4 NPs. The unit mass of the pure europium complex in some composite microfibers gave stronger luminescence than the pure europium complex. The fluorescence lifetime of 5D0 state in the composite microfibers is longer than that of pure europium complex. Additionally, the magnetic properties of Fe3O4 NPs and the composite microfibers were investigated. The saturation magnetization of the composite microfibers was smaller than that of pure Fe3O4 NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. X.X. Yao, X.X. Niu, K.X Ma, P. Huang, J. Grothe, S. Kaskel, Y.F. Zhu, Graphene quantum dots-capped magnetic mesoporous silica nanoparticles as a multifunctional platform for controlled drug delivery, magnetic hyperthermia, and photothermal therapy. Small 13, 1602225 (1–11) (2017)

  2. Z. Naghshbandi, N. Arsalani, M.S. Zakerhamidi, K.E. Geckeler, A novel synthesis of magnetic and photoluminescent graphene quantum dots/MFe2O4 (M = Ni, Co) nanocomposites for catalytic application. Appl. Surf. Sci. 443, 484–491 (2018)

    Article  CAS  Google Scholar 

  3. F. Yang, A. Skripka, M.S. Tabatabaei, S.H. Hong, F.Q. Ren, Y. Huang, J.K. Oh, S. Martel, X.Y. Liu, F. Vetrone, D.L. Ma, Magnetic photoluminescent nanoplatform built from large-pore mesoporous silica. Chem. Mater. 31, 3201–3210 (2019)

    Article  CAS  Google Scholar 

  4. Y. Fang, C.L. Xing, S.X. Zhan, M. Zhao, M.X. Li, H.L. Liu, C.Z. Wang, Multifunctional magnetic–fluorescent nanoparticle: fabrication, bioimaging, and potential antibacterial applications. ACS Biomater. Sci. Eng. 5, 6779–6793 (2019)

    Article  CAS  Google Scholar 

  5. F. Arteaga-Cardona, J.O. Estévez, M.A. Méndez-Rojas, S. Hidalgo-Tobón, P. Dies-Suarez, N.R. Silva-González, J.M.G. Jiménez, G.N. Cherr, U. Salazar-Kuri, Fabrication of a multifunctional magnetic-fluorescent material for medical applications. Dalton Trans. 49, 4376–4389 (2020)

    Article  CAS  Google Scholar 

  6. S. Li, X.W. Shi, H.B. Wang, L. Xiao, A multifunctional dual-shell magnetic nanocomposite with near-infrared light response for synergistic chemo-thermal tumor therapy. J. Biomed Mater Res. 108, 1–12 (2020)

    Google Scholar 

  7. Q.Y. Zhuang, X.H. Wang, Z.X. Geng, H.S. Peng, Facile synthesis of multifunctional nanoparticles encoded with quantum dots and magnetic nanoparticles: cell tagging and MRI. Nanotechnology 31(1–7), 065101 (2020)

    Article  CAS  Google Scholar 

  8. Q. Li, Z. Liao, L. Han, L. Li, Y. Song, E. Song, Isolation and analysis of tumor cell subpopulations using biomimetic immuno-fluorescent magnetic multifunctional nanoprobes. Adv. Funct. Mater (2020). https://doi.org/10.1002/adfm.202004963

    Article  Google Scholar 

  9. S.W. Fu, Y.D. Ding, T. Cong, X.G. Yang, X. Hong, B. Yu, Y.X. Li, Y.C. Liu, Multifunctional NaYF4:Yb, Er@PE3@Fe3O4 nanocomposites for magnetic-field-assisted upconversion imaging guided photothermal therapy of cancer cells. Dalton Trans. 48, 12850–12857 (2019)

    Article  CAS  Google Scholar 

  10. J.C. Park, M.K. Yu, G. An, S. Park, J. Oh, H.J. Kim, J.H. Kim, E.K. Wang, H. Hong, Y.S. Ha, T.H. Choi, K.S. Jeong, Y. Chang, M.J. Welch, S. Jon, J. Yoo, Facile preparation of a hybrid nanoprobe for triple-modality optical/PET/MR imaging. Small 6, 2863–2868 (2010)

    Article  CAS  Google Scholar 

  11. Q. Ma, Y. Nakane, Y. Mori, M. Hasegawa, Y. Yoshioka, T.M. Watanabe, K. Gonda, N. Ohuchi, T. Jin, Multilayered, core/shell nanoprobes based on magnetic ferric oxide particles and quantum dots for multimodality imaging of breast cancer tumors. Biomaterials 33, 8486–8494 (2012)

    Article  CAS  Google Scholar 

  12. S.S. Syamchand, G. Sony, Europium enabled luminescent nanoparticles for biomedical applications. J. Lumin. 165, 190–215 (2015)

    Article  CAS  Google Scholar 

  13. H. Zhang, H.W. Song, B. Dong, L.L. Han, G.H. Pan, X. Bai, L.B. Fan, S.Z. Lu, H. Zhao, F. Wang, Electrospinning preparation and luminescence properties of europium complex/polymer composite fibers. J. Phys. Chem. C 112, 9155–9162 (2008)

    Article  CAS  Google Scholar 

  14. P.P. Yang, Z.W. Quan, Z.Y. Hou, C.X. Li, X.J. Kang, Z.Y. Cheng, J. Lin, A magnetic, luminescent and mesoporous core–shell structured composite material as drug carrier. Biomaterials 30, 4786–4795 (2009)

    Article  CAS  Google Scholar 

  15. Q.H. Zuo, B. Li, L.M. Zhang, Y.H. Wang, Y.H. Liu, J. Zhang, Y. Chen, L.S. Guo, Synthesis, photophysical and oxygen-sensing properties of a novel Eu3+ complex incorporated in mesoporous MCM-41. J. Solid State Chem. 183, 1715–1720 (2010)

    Article  CAS  Google Scholar 

  16. M. Pooresmaeil, H. Namazi, pH-sensitive ternary Fe3O4/GQDs@G hybrid microspheres; synthesis, characterization and drug delivery application. J. Alloys Compd. 846, 156419 (2020)

    Article  CAS  Google Scholar 

  17. N. Akram, W. Ma, J. Guo, Y. Guo, Y.S. Zhao, A. Hassan, J. Wang, Synergistic catalysis of Fe3O4/CuO bimetallic catalyst derived from prussian blue analogues for the efficient decomposition of various organic pollutants. Chem. Phys. 540, 110974 (2021)

    Article  CAS  Google Scholar 

  18. L.L. Zhang, S. Tong, Q.B. Zhang, G. Bao, Lipid-encapsulated Fe3O4 nanoparticles for multimodal magnetic resonance/fluorescence imaging. ACS Appl. Nano Mater. 3, 6785–6797 (2020)

    Article  CAS  Google Scholar 

  19. H.X. Peng, G.X. Liu, X.T. Dong, J.X. Wang, J. Xu, W.S. Yu, Preparation and characteristics of Fe3O4@YVO4:Eu3+ bifunctional magnetic–luminescent nanocomposites. J. Alloys compd. 509, 6930–6974 (2011)

    Article  CAS  Google Scholar 

  20. Z.W. Sun, L.Z. Tong, D.M. Liu, J.H. Shi, H. Yang, Preparation and properties of multifunctional Fe3O4 @YVO4:Eu3+ or Dy3+ core-shell nanocomposites as drug carriers. J. Mater. Chem. 22, 6280–6284 (2012)

    Article  CAS  Google Scholar 

  21. X.B. Li, Q.L. Ma, J. Tian, X. Xi, D. Li, X.T. Dong, W.S. Yu, X.L. Wang, J.X. Wang, G.X. Liu, Double anisotropic electrically conductive flexible Janus-typed membranes. Nanoscale 9, 18918–18930 (2017)

    Article  CAS  Google Scholar 

  22. J. Tian, Q.L. Ma, W.S. Yu, D. Li, X.T. Dong, G.X. Liu, J.X. Wang, Preparation of Janus microfibers with magnetic and fluorescence functionality via conjugate electro-spinning. Mater. Design. 170, 107701 (2019)

    Article  CAS  Google Scholar 

  23. Y.R. Xie, Q.L. Ma, H.N. Qi, Y. Song, J. Tian, W.S. Yu, X.T. Dong, D. Li, G.X. Liu, J.X. Wang, Modularization design philosophy for multifunctional materials: a case study of a Janus film affording concurrent electrically conductive anisotropic-magnetic-fluorescent multifunctionality. J. Mater. Chem 7, 9075–9086 (2019)

    CAS  Google Scholar 

  24. Y. Nagakawa, M. Kato, S. Suye, S. Fujita, Fabrication of tough, anisotropic, chemical-crosslinker-free poly(vinyl alcohol) nanofibrous cryogels via electrospinning. RSC Adv. 10, 38045–38054 (2020)

    Article  CAS  Google Scholar 

  25. F.C. Zhan, X.X. Yan, J. Li, F. Sheng, B, Li, Encapsulation of tangeretin in PVA/PAA crosslinking electrospun fibers by emulsion-electrospinning: Morphology characterization, slow-release, and antioxidant activity assessment. Food Chem. 337, 127763 (2021)

    Article  CAS  Google Scholar 

  26. L.Y. Wang, X.T. Dong, G.Q. Gai, L. Zhao, S.Z. Xu, X.F. Xiao, One-pot facile electrospinning construct of flexible Janus nanofibers with tunable and enhanced magnetism–photoluminescence bifunctionality. J. Nanopart. Res. 17, 91 (2015)

    Article  Google Scholar 

  27. Y.W. Liu, Q.L. Ma, M. Yang, X.T. Dong, Y. Yang, J.X. Wang, W.S. Yu, G.X. Liu, Flexible hollow nanofibers: Novel one-pot electrospinning construction, structure and tunable luminescence–electricity–magnetism trifunctionality. Chem. Eng. J. 284, 831–840 (2016)

    Article  CAS  Google Scholar 

  28. Y.H. Zhang, Z.S. Su, B. Li, L.M. Zhang, D. Fan, H.P. Ma, Recyclable magnetic mesoporous nanocomposite with improved sensing performance toward nitrite. ACS Appl. Mater. Interfaces. 8, 12344–12351 (2016)

    Article  CAS  Google Scholar 

  29. L.N. Liu, B. Li, J. Zhang, R.F. Qin, H.F. Zhao, X.G. Ren, Electrospinning preparation and characterization of a new kind of composite nanomaterials: one-dimensional composite nanofibers doped with TiO2 nanoparticles and Ru(II) complex. Mater. Res. Bull. 44, 2081–2086 (2009)

    Article  CAS  Google Scholar 

  30. L.N. Liu, B. Li, R.F. Qin, H.F. Zhao, X.G. Ren, Z.M. Su, Electrospinning preparation and characterization of a new kind of composite nanomaterials: one-dimensional composite nanofibers doped with TiO2 nanoparticles and Ru(II) complex. Nanotechnology 21, 285701 (2010)

    Article  Google Scholar 

  31. S. Abdel-Aal, A. Abdel-Rahman, Graphene influence on the structure, magnetic, and optical properties of rare-earth perovskite. J. Nanopart. Res. 22, 267 (2020)

    Article  CAS  Google Scholar 

  32. S. Abdel-Aal, A. Abdel-Rahman, W. Gamal, M. Abdel-Kader, H. Ayoub, A. EI-Sherif, M. Kandeel, S. Bozhko, E.E. Yakimov, E.B. Yakimov, Crystal structure, vibrational spectroscopy and optical properties of a one-dimensional organic– inorganic hybrid perovskite of [NH3CH2CH(NH3)- CH2]BiCl5. Acta Cryst. B75, 880–886 (2019)

    Google Scholar 

  33. H. Zhang, H.W. Song, H.Q. Yu, X. Bai, S.W. Li, G.H. Pan, Q.L. Dai, T. Wang, W.L. Li, S.Z. Lv, X.G. Ren, H.F. Zhao, Electrospinning preparation and photoluminescence properties of rare-earth complex/polymer composite fibers. J. Phys. Chem. C 111, 6524–6527 (2007)

    Article  CAS  Google Scholar 

  34. S.W. Li, H.W. Song, W.L. Li, X.G. Ren, S.Z. Lv, G.H. Pan, L.B. Fan, H.Q. Yu, H. Zhang, R.F. Qin, Q.L. Dai, T. Wang, Improved photoluminescence properties of ternary terbium complexes in mesoporous molecule sieves. J. Phys. Chem. B 110, 23164–23169 (2006)

    Article  CAS  Google Scholar 

  35. H. Zhang, H.W. Song, H.Q. Yu, S.W. Li, X. Bai, G.H. Pan, Q.L. Dai, T. Wang, W.L. Li, S.Z. Lv, X.G. Ren, H.F. Zhao, X.G. Kong, Modified photoluminescence properties of rare-earth complex/polymer composite fibers prepared by electrospinning. Appl. Phys. Lett. 90, 103103 (2007)

    Article  Google Scholar 

  36. Y.X. Zheng, Y.H. Zhou, G. Accoris, N. Armaroli, Synthesis and photoluminescence of a dendritic europium complex with carbazole moieties. J. Rare Earth 26, 173–177 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundations of China (No. 51802139, 11905096 and 51801092), and the Natural Science Foundations of Henan province (No. 212102210312, 20B140009, 19A430020 and 21A140016).

Funding

The financial support from the National Natural Science Foundations of China, Grant No (51802139, 11905096 and 51801092). Natural Science Foundation of Henan Province, Grant No (18B140007, 20B140009, 19A430020 and 21A140016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Liu.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, R., Liu, L. Electrospinning synthesis of Fe3O4/Eu(DBM)3phen/PVP multifunctional microfibers and their structure, luminescent and magnetic properties. J Mater Sci: Mater Electron 32, 18741–18750 (2021). https://doi.org/10.1007/s10854-021-06393-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06393-5

Navigation