Skip to main content
Log in

Effects of organic material on magnetoresistance in electron-doped double perovskite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Curie temperature of electron-doped Sr2FeMoO6 can be optimized significantly due to the band-filling effect, but accompanying an almost absent low-field magnetoresistance (LFMR), which is unfavorable to applications in the magnetoresistive devices operated at room temperature. Our previous works confirmed that, a remarkable enhanced LFMR was observed in Sr2FeMoO6 by modifying the grain boundary with insulating organic small molecules (glycerin, CH2OHCHOHCH2OH). However, in this work, modifying the grain boundary strength of the La0.5Sr1.5FeMoO6 with the insulating organic macromolecules (oleic acid, CH3(CH2)7CH=CH(CH2)7COOH) or small molecules (glycerin), both of them have negligible functions on the magnetoresistance (MR) behavior in La0.5Sr1.5FeMoO6. Contrary to the glycerin-modified Sr2FeMoO6, Sr2FeMoO6/oleic acid composites do not exhibit an obviously increased MR property. Based on the above experimental results and the related works, it is proposed that, maintaining high spin polarization of the carriers at the Fermi level and improving the tunneling process across the grain boundary using the suitable organic materials are decisive factors for optimizing the MR behavior in the similar electron-doped double perovskites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Y. Tokura, Nature 395, 677 (1998)

    Article  CAS  Google Scholar 

  2. L. Balcells, J. Navarro, M. Bibes, A. Roig, B. Martínez, J. Fontcuberta, Appl. Phys. Lett. 78, 781 (2001)

    Article  CAS  Google Scholar 

  3. J. Navarro, J. Nogués, J.S. Muñoz, J. Fontcuberta, Phys. Rev. B 67, 174416 (2003)

    Article  Google Scholar 

  4. Z. Wang, A.H. Tavabi, L. Jin, J. Rusz, D. Tyutyunnikov, H. Jiang, Y. Moritomo, J. Mayer, R.E. Dunin-Borkowski, R. Yu, J. Zhu, X. Zhong, Nat. Mater. 17, 221 (2018)

    Article  CAS  Google Scholar 

  5. I. Hussain, M.S. Anwar, S.N. Khan, J.W. Kim, K.C. Chung, B.H. Koo, J. Alloys Compd. 694, 815 (2017)

    Article  CAS  Google Scholar 

  6. S. Varaprasad, K. Thyagarajan, Y. Markandeya, K. Suresh, G. Bhikshamaiah, J. Mater. Sci. Mater. Electron. 29, 13606 (2018)

    Article  CAS  Google Scholar 

  7. L.D. Hien, N.P. Duong, L.N. Anh, T.T. Loan, S. Soontaranon, A. de Visser, J. Alloys Compd. 793, 375 (2019)

    Article  CAS  Google Scholar 

  8. M. Tovar, M.T. Causa, A. Butera, J. Navarro, B. Martínez, J. Fontcuberta, M.C.G. Passeggi, Phys. Rev. B 66, 024409 (2002)

    Article  Google Scholar 

  9. J. Navarro, C. Frontera, L. Balcells, B. Martínez, J. Fontcuberta, Phys. Rev. B 64, 092411 (2001)

    Article  Google Scholar 

  10. J. Fontcuberta, D. Rubi, C. Frontera, J.L. García-Muñoz, M. Wojcik, E. Jedryka, S. Nadolski, M. Izquierdo, J. Avila, M.C. Asensio, J. Magn. Magn. Mater. 290–291, 974 (2005)

    Article  Google Scholar 

  11. C. Frontera, D. Rubi, J. Navarro, J.L. García-Muñoz, J. Fontcuberta, C. Ritter, Phys. Rev. B 68, 012412 (2003)

    Article  Google Scholar 

  12. Q. Zhang, Z.F. Xu, H.B. Sun, X. Zhang, H. Wang, G.H. Rao, J. Alloys Compd. 745, 525 (2018)

    Article  CAS  Google Scholar 

  13. J.F. Wang, T.F. Shi, Z.T. Zhuang, Q.Q. Gao, Y.M. Zhang, RSC Adv. 8, 29071 (2018). https://doi.org/10.1039/c8ra05755a

    Article  CAS  Google Scholar 

  14. I. Hussain, M.S. Anwar, S.N. Khan, J.W. Kin, K.C. Chung, B.H. Koo, J. Alloys Compd. 694, 815 (2017). https://doi.org/10.1016/j.jallcom.2016.10.073

    Article  CAS  Google Scholar 

  15. D. Serrate, J.M. De Teresa, J. Blasco, M.R. Ibarra, L. Morellón, C. Ritter, Appl. Phys. Lett. 80, 4573 (2002)

    Article  CAS  Google Scholar 

  16. D. Rubi, C. Frontera, J. Nogués, J. Fontcuberta, J. Phys. Condens. Matter 16, 3173 (2004)

    Article  CAS  Google Scholar 

  17. C.L. Yuan, S.G. Wang, W.H. Song, T. Yu, J.M. Dai, S.L. Ye, Y.P. Sun, Appl. Phys. Lett. 75, 3853 (1999)

    Article  CAS  Google Scholar 

  18. S.R. Shinde, S.B. Ogale, R.L. Greene, T. Venkatesan, K. Tsoi, S.W. Cheong, A.J. Millis, J. Appl. Phys. 93, 1605 (2003)

    Article  CAS  Google Scholar 

  19. Y. Tomioka, T. Okuda, Y. Okimoto, R. Kumai, K. Kobayashi, Y. Tokura, Phys. Rev. B 61, 422 (2000)

    Article  CAS  Google Scholar 

  20. N. Kumar, G. Khurana, A. Gaur, R.K. Kotnala, J. Appl. Phys. 114, 053902 (2013)

    Article  Google Scholar 

  21. J. Zhang, W.J. Ji, J. Xu, Z.B. Gu, Y.B. Chen, S.T. Zhang, J. Phys. Condens. Matter 31, 225001 (2019)

    Article  CAS  Google Scholar 

  22. D. Niebieskikwiat, A. Caneiro, R.D. Sánchez, J. Fontcuberta, Phys. Rev. B 64, 180406 (2001)

    Article  Google Scholar 

  23. D. Niebieskikwiat, A. Caneiro, R.D. Sánchez, J. Fontcuberta, Physica B 320, 107 (2002)

    Article  CAS  Google Scholar 

  24. L. Harnagea, B. Jurca, P. Berthet, J. Solid State Chem. 211, 219 (2014)

    Article  CAS  Google Scholar 

  25. D.D. Sarma, S. Ray, K. Tanaka, M. Kobayashi, A. Fujimori, P. Sanyal, H.R. Krishnamurthy, C. Dasgupta, Phys. Rev. Lett. 98, 157205 (2007)

    Article  CAS  Google Scholar 

  26. E. Burzo, I. Balasz, S. Constantinescu, I.G. Deac, J. Magn. Magn. Mater. 316, e741 (2007)

    Article  CAS  Google Scholar 

  27. D. Niebieskikwiat, F. Prado, A. Caneiro, R.D. Sánchez, Phys. Rev. B 70, 132412 (2004)

    Article  Google Scholar 

  28. J.-F. Wang, B. Hu, J. Zhang, Z.-B. Gu, S.-T. Zhang, J. Alloys Compd. 621, 131 (2015)

    Article  CAS  Google Scholar 

  29. J.F. Wang, J. Zhang, B. Hu, Z.B. Gu, S.T. Zhang, J. Phys. D 47, 445003 (2014)

    Article  Google Scholar 

  30. W. Zhong, W. Liu, C.T. Au, Y.W. Du, Nanotechnology 17, 250 (2006)

    Article  CAS  Google Scholar 

  31. W. Ji, J.-F. Wang, J. Xu, L. Jiao, J. Zhou, Y.B. Chen, Z.-B. Gu, S.-H. Yao, S.-T. Zhang, Y.-F. Chen, J. Phys. D 46, 015001 (2013)

    Article  Google Scholar 

  32. M. Retuerto, F. Jimenez-Villacorta, M.J. Martinez-Lope, Y. Huttel, E. Roman, M.T. Fernandez-Diaz, J.A. Alonso, Phys. Chem. Chem. Phys. 12, 13616 (2010)

    Article  CAS  Google Scholar 

  33. P. Kumar, N.K. Singh, G. Gupta, P. Singh, RSC Adv. 6, 22094 (2016). https://doi.org/10.1039/c5ra23178g

    Article  CAS  Google Scholar 

  34. L.V. Kovalev, M.V. Yarmolich, M.L. Petrova, J. Ustarroz, H.A. Terryn, N.A. Kalanda, M.L. Zheludkevich, ACS Appl. Mater. Interfaces 6, 19201 (2014)

    Article  CAS  Google Scholar 

  35. H. Jalili, N.F. Heinig, K.T. Leung, Phys. Rev. B 79, 174427 (2009)

    Article  Google Scholar 

  36. H. Liu, X.-X. Li, X.-Y. Liu, Z.-H. Ma, Z.-Y. Yin, W.-W. Yang, Y.-S. Yu, Rare Met. 40, 808 (2021)

    Article  CAS  Google Scholar 

  37. Z. Ma, H. Tian, L. Cong, Q. Wu, M. Yue, S. Sun, Angew. Chem. Int. Ed. Engl. 58, 14509 (2019)

    Article  CAS  Google Scholar 

  38. Z. Ma, M. Yue, H. Liu, Z. Yin, K. Wei, H. Guan, H. Lin, M. Shen, S. An, Q. Wu, S. Sun, J. Am. Chem. Soc. 142, 8440 (2020)

    Article  CAS  Google Scholar 

  39. L. Xi, J.H. Du, J.H. Ma, Z. Wang, Y.L. Zuo, D.S. Xue, J. Alloys Compd. 550, 365 (2013)

    Article  CAS  Google Scholar 

  40. F.J. Yue, S. Wang, L. Lin, H.F. Ding, D. Wu, J. Phys. D 45, 075001 (2012)

    Article  Google Scholar 

  41. F.J. Yue, S. Wang, D. Wu, Appl. Phys. A 111, 347 (2013)

    Article  CAS  Google Scholar 

  42. S. Wang, F.J. Yue, D. Wu, F.M. Zhang, W. Zhong, Y.W. Du, Appl. Phys. Lett. 94, 012507 (2009)

    Article  Google Scholar 

Download references

Funding

This work was supported by Fund from the Natural Science Foundation of China (U1504107).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ya-Fang Li or Jin-Feng Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YF., Liu, Y., Zhang, YM. et al. Effects of organic material on magnetoresistance in electron-doped double perovskite. J Mater Sci: Mater Electron 32, 18711–18720 (2021). https://doi.org/10.1007/s10854-021-06390-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06390-8

Navigation