Skip to main content
Log in

Study on resistance switching characteristics and regulation mechanisms of Bi0.9Er0.1Fe0.99Mn0.01O3/Zn1−xCuxO thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The carrier transport, ferroelectric and resistance switching properties of Bi0.9Er0.1Fe0.99Mn0.01O3/Zn1−xCuxO (BEFM/ZCuxO, x = 0.00–0.09) composite films were studied to elucidate the correlation between ferroelectricity and resistance switching and the formation mechanism of resistance switching behavior. BEFM/ZCuxO films are a combination of bulk conduction and interfacial conduction, and interface conduction is dominant. The BEFM/ZnO thin film exhibits a rectifying diode effect, and BEFM can regulate the carrier transport at the interface through ferroelectric polarization to achieve the regulation of resistance state. However, the ferroelectricity of the BEFM/ZCuxO composite films has almost disappeared, and its resistance switching behavior can be achieved by adjusting the change of the interface barrier through the transport of oxygen vacancies. The resistance switching effect of BEFM/ZCuxO composite films may have potential applications in the field of non-volatile storage and multifunction storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.P. Dutta, O.D. Jayakumar, A.K. Tyagi et al., Effect of doping on the morphology and multiferroic properties of BiFeO3 nanorods. Nanoscale 2, 1149 (2010)

    Article  CAS  Google Scholar 

  2. S. Dong, J.M. Liu, S.W. Cheong et al., Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Adv. Phys. 64, 519–626 (2015)

    Article  CAS  Google Scholar 

  3. Z.Q. Hu, M.Y. Li, Y.D. Zhu et al., Epitaxial growth and capacitance-voltage characteristics of BiFeO3/CeO2/yttria-stabilized zirconia/Si(001) heterostructure. Appl. Phys. Lett. 100, 252908 (2012)

    Article  Google Scholar 

  4. D.S. Jeong, R. Thomas, R.S. Katiyar et al., Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75, 076502 (2012)

    Article  Google Scholar 

  5. J.S. Vasconcelos, N.S.L.S. Vasconcelos, M.O. Orlandi et al., Electrostatic force microscopy as a tool to estimate the number of active potential barriers in dense non-Ohmic polycrystalline SnO2 devices. Appl. Phys. Lett. 89, 152102 (2006)

    Article  Google Scholar 

  6. S.Y. Wang, F. Guo, X. Wang et al., Tuning the resistive switching memory in a metal-ferroelectric-semiconductor capacitor by field effect structure. Appl. Surf. Sci. 356, 898–904 (2015)

    Article  CAS  Google Scholar 

  7. Z. Hu, Q. Li, M. Li et al., Ferroelectric memristor based on Pt/BiFeO3/Nb-doped SrTiO3 heterostructure. Appl. Phys. Lett. 102, 1–5 (2013)

    Google Scholar 

  8. F. Zhang, Y.B. Lin, H. Wu et al., Asymmetric reversible diode-like resistive switching behaviors in ferroelectric BaTiO3 thin films. Chin. Phys. B 23, 486–490 (2014)

    Google Scholar 

  9. Y. Bai, Z. Wang, Y. Chen et al., Resistive switching and modulation of Pb(Zr0.4Ti0.6)O3/Nb:SrTiO3 heterostructures. ACS Appl. Mater. Interfaces 8, 32948 (2016)

    Article  CAS  Google Scholar 

  10. P. Hou, J. Wang, X. Zhong et al., A ferroelectric memristor based on the migration of oxygen vacancies. RSC Adv. 6, 54113–54118 (2016)

    Article  CAS  Google Scholar 

  11. D. Lee, S.H. Baek, T.H. Kim et al., Polarity control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode and photovoltaic effects. Phys. Rev. B. 84, 125305 (2011)

    Article  Google Scholar 

  12. H. Yang, H.M. Luo, H. Wang et al., Rectifying current-voltage characteristics of BiFeO3/Nb-doped SrTiO3 heterojunction. Appl. Phys. Lett. 92, 222–224 (2008)

    Google Scholar 

  13. C.C. Hsu, W.C. Ting, Y.T. Chen, Effects of substrate temperature on resistive switching behavior of planar ZnO resistive random access memories. J. Alloys Compd. 691, 537–544 (2017)

    Article  CAS  Google Scholar 

  14. Y. Huang, Z.H. Shen, Y. Wu et al., Amorphous ZnO based resistive random access memory. RSC Adv. 6, 17867–17872 (2016)

    Article  CAS  Google Scholar 

  15. S. Jethva, S.V. Katba, M. Bhatnagar et al., Effect of strain on the modifications in electronic structure and resistive switching in Ca-doped BiFeO3 films. J. Appl. Phys. 125, 082510 (2019)

    Article  Google Scholar 

  16. D. Li, W.C. Zheng, D.X. Zheng et al., Magnetization and resistance switchings induced by electric field in epitaxial Mn:ZnO/BiFeO3 multiferroic heterostructures at room temperature. ACS Appl. Mater. Interfaces 8, 3977–3986 (2016)

    Article  CAS  Google Scholar 

  17. Z.W. Yue, G.Q. Tan, H.J. Ren et al., Resistive switching and the local electric field in Bi0.85xPr0.15RExFe0.97Mn0.03O3/CuFe2O4 (RE= Sr, Dy) bilayered thin films. ACS Appl. Mater. Interfaces 9, 20205–20212 (2017)

    Article  CAS  Google Scholar 

  18. M. Li, J. Zhou, X.S. Jing et al., Controlling resistance switching polarities of epitaxial BaTiO3 films by mediation of ferroelectricity and oxygen vacancies. Adv. Electron. Mater. 1, 1500069 (2015)

    Article  Google Scholar 

  19. T.L. Qu, Y.G. Zhao, D. Xie et al., Resistance switching and white-light photovoltaic effects in BiFeO3/Nb-SrTiO3 heterojunctions. Appl. Phys. Lett. 98, 173507 (2011)

    Article  Google Scholar 

  20. Z. Lu, Z. Fan, P. Li et al., Ferroelectric resistive switching in high-density nanocapacitor arrays based on BiFeO3 ultrathin films and ordered Pt nanoelectrodes. ACS Appl. Mater. Interfaces 8, 23963–23968 (2016)

    Article  CAS  Google Scholar 

  21. S.Y. Yang, L.W. Martin, S.J. Byrnes et al., Photovoltaic effects in BiFeO3. Appl. Phys. Lett. 95, 062909 (2009)

    Article  Google Scholar 

  22. Y. Li, X.Y. Sun, C.Y. Xu et al., Ferroelectric resistive switching behavior in two-dimensional materials/BiFeO3 heterojunctions. Nanoscale 10, 23080–23086 (2018)

    Article  CAS  Google Scholar 

  23. C. Wang, K.J. Jin, Z.T. Xu et al., Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films. Appl. Phys. Lett. 98, 192901.1-192901.3 (2011)

    Google Scholar 

  24. P. Li, Z.M. Gao, X.S. Huang et al., Ferroelectric polarization reversal tuned by magnetic field in a ferroelectric BiFeO3/Nb-doped SrTiO3 heterojunction. Front. Phys. 13, 136803 (2018)

    Article  Google Scholar 

  25. Q. Jin, C. Zheng, Y. Zhang et al., Enhanced resistive memory in Nb-doped BaTiO3 ferroelectric diodes. Appl. Phys. Lett. 111, 032902 (2017)

    Article  Google Scholar 

  26. Y. Liu, G.Q. Tan, X.X. Ren et al., Electric field dependence of ferroelectric stability in BiFeO3 thin films co-doped with Er and Mn. Ceram. Int. 46, 18690–18697 (2020)

    Article  CAS  Google Scholar 

  27. J.G. Wu, J. Wang, D.Q. Xiao et al., Migration kinetics of oxygen vacancies in Mn-modified BiFeO3 thin films. ACS Appl. Mater. Interfaces 3, 2504–2511 (2011)

    Article  CAS  Google Scholar 

  28. J. Wu, J. Wang, Diodelike and resistive hysteresis behavior of heterolayered BiFeO3/ZnO ferroelectric thin films. J. Appl. Phys. 108, 094107 (2010)

    Article  Google Scholar 

  29. M.Y. Guo, G.Q. Tan, W. Yang et al., Enhancement of multiferroic properties in Bi0.92Ho0.08Fe0.97Mn0.03O3/Zn0.5Ni0.5Fe2O4 bilayered thin films by tunable schottky barrier and interface barrier. J. Alloys Compd. 741, 420–431 (2018)

    Article  CAS  Google Scholar 

  30. G.Q. Tan, Z.J. Chai, Y.J. Zheng et al., Resistive switching behavior and improved multiferroic properties of Bi0.9Er0.1Fe0.98Co0.02O3/Co1xMnxFe2O4 bilayered thin films. Ceram. Int. 44, 12600–12609 (2018)

    Article  CAS  Google Scholar 

  31. S. Ginnaram, J.T. Qiu, S. Maikap, Controlling Cu migration on resistive switching, artifificial synapse, and glucose/saliva detection by using an optimized AlOx interfacial layer in a-COx-based conductive bridge random access memory. ACS Omega 5, 7032–7043 (2020)

    Article  CAS  Google Scholar 

  32. J. Xu, Z. Jia, N. Zhang et al., Influence of La and Mn dopants on the current-voltage characteristics of BiFeO3/ZnO heterojunction. J. Appl. Phys. 111, 074101 (2012)

    Article  Google Scholar 

  33. Y. Liu, G.Q. Tan, Z.J. Chai et al., Dielectric relaxation and resistive switching of Bi0.96Sr0.04Fe0.98Co0.02O3/CoFe2O4 thin films with different thicknesses of the Bi0.96Sr0.04Fe0.98Co0.02O3 layer. Ceram. Int. 45, 3522–3530 (2018)

    Article  Google Scholar 

  34. Y.J. Joshua, F. Miao, M.D. Pickett et al., The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 20, 215201 (2009)

    Article  Google Scholar 

  35. Z.X. Lu, X.D. Yang, C. Jin et al., Nonvolatile electric-optical memory controlled by conductive filaments in Ti-doped BiFeO3. Adv. Electron. Mater. 4, 1700551 (2018)

    Article  Google Scholar 

  36. J.M. Luo, S.H. Chen, S.L. Bu et al., Resistive switching and Schottky diode-like behaviors in Pt/BiFeO3/ITO devices. J. Alloys Compd. 601, 100–103 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Shaanxi Province Key Research and Development Plan (2018GY-107); the Project of the National Natural Science Foundation of China (51372145); Natural Science Basic Research Plan in Shaanxi Province of China (2020JQ-730); the Graduate Innovation Fund of Shaanxi University of Science &Technology (SUST-A04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Tan, G., Ren, X. et al. Study on resistance switching characteristics and regulation mechanisms of Bi0.9Er0.1Fe0.99Mn0.01O3/Zn1−xCuxO thin films. J Mater Sci: Mater Electron 32, 18699–18710 (2021). https://doi.org/10.1007/s10854-021-06384-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06384-6

Navigation