Skip to main content
Log in

Enhanced pesticides’ limit of detection using bimetallic alloys nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bimetallic (Ag-Pd and Au–Pd) alloys nanoparticles were synthesized for sensitive, rapid characterization and very low concentration of pesticides. Pulsed laser-induced etching at 500 mW/cm2 power density and 20% laser duty cycle was performed in order to prepare based Si nano-pillars substrates with high density of ion reduction sites and excellent uniformity. Bimetallic Ag-Pd and Au–Pd alloys/Si nano-pillars SERS sensors were obtained by simple immersion of Si nano-pillars in a mixture of HAuCl4, AgNO3 and PdCl2 solutions. The sensors were tested by Atomic force microscope (AFM), field emission scanning electron microscope (FESEM), energy-dispersive analysis (EDX), and X-ray diffraction (XRD). Our findings revealed that the distributions and sizes of the formed alloy nanoparticles, and the hot spots junctions were modified when changing the nanoparticles types. The SERS sensors performance displays an excellent recognition of ultra-low concentrations of chlorpyrifos solutions with an exponential relationship with the Raman signal. The highest enhancement factor (EF = 4.2 × 106) with minimum limit of detection 0.066 mg/Kg were obtained with Au–Pd sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Pilot, R. Signorini, C. Durante, L. Orian, M. Bhamidipati, L. Fabris, A review on surface-enhanced raman scattering. Biosensors 9(2), 57 (2019)

    Article  CAS  Google Scholar 

  2. C. Yanqin, L. Dan, J. Fang, Y. Yong, H. Zhengren, Engineering nanostructures of inorganic materials for optical and chemical applications. J. Nanomater. (2013). https://doi.org/10.1155/2013/123812

    Article  Google Scholar 

  3. L. Dan, C. Francesca, Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity. Beilstein J. Nanotechnol. 5, 2275–2292 (2014)

    Article  Google Scholar 

  4. A. Campion, P. Kambhampati, Surface-enhanced Raman scattering. Chem. Soc. Rev. 27(4), 241–250 (1998)

    Article  CAS  Google Scholar 

  5. M. Alwan, A. Duaa, F. Muslim, Optimizing of porous silicon alloying process with bimetallic nanoparticles. Gold Bulletin 51, 175–184 (2018)

    Article  CAS  Google Scholar 

  6. P. Selvakannan, R. Rajesh, J. Blake, M. Ylias, K. Hemant, P. Anthony, B. Vipul, K. Suresh, Probing the effect of charge transfer enhancement in off resonance mode SERSvia conjugation of the probe dye between silver nanoparticles and metal substrates. Phys. Chem. Chem. Phys. 15, 12920–12929 (2013)

    Article  CAS  Google Scholar 

  7. H. Christy, D. Adam, P. Richard, Surface-Enhanced Raman Spectroscopy. Anal. Chem. 77(17), 338–346 (2005)

    Article  Google Scholar 

  8. A. Duaa, M. Alwan, F. Muslim, Influence of Ag NPs on Silicon Nanocolumns NH3 Gas Sensors. J. Electrochem. Soc. 165(14), 773–778 (2018)

    Google Scholar 

  9. B. Sharma, M. Fernanda, L. Samuel, G. Nathan, R. Renee, G. Martin, C. George, P. Richard, High-performance SERS substrates: Advances and challenges. MRS Bull. 38, 615–624 (2013)

    Article  CAS  Google Scholar 

  10. M. Oliveira, P. Quaresma, D.M. Peixoto et al., “Office paper decorated with silver nanostars - an alternative cost effective platform for trace analyte detection by SERS” Sci. Rep. 7, 2480 (2017)

    Google Scholar 

  11. R. Darya, M. Helmuth, Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells. Phys. Chem. Chem. Phys. 17, 21072–21093 (2015)

    Article  Google Scholar 

  12. M. Garcia, Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D Appl. Phys. 44(28), 283001 (2011)

    Article  Google Scholar 

  13. M.A. Garcia, Surface plasmons in metallic nanoparticles: fundamentals and applications”. J. Phys. D: Appl. Phys. 45, 389501 (2012)

    Article  Google Scholar 

  14. M.A. Alwan, Calculation of energy band gap of porous silicon based onthe carrier transport mechanisms. Eng. & Tech. 25(10), 1143–1148 (2007)

    Google Scholar 

  15. T.Y. Jeon, D.J. Kim, S. Park et al., Nanostructured plasmonic substrates for use as SERS sensors. Nano Convergence 3(18), 1–20 (2016)

    Google Scholar 

  16. V.S. Vendamani, S.V.S. Nageswara Rao, S. Venugopal Rao, D. Kanjilal, A.P. Pathak, Three-dimensional hybrid silicon nanostructures for surface enhanced Raman spectroscopy based molecular detection”. J. Appl. Phys. 123, 014301 (2018). https://doi.org/10.1063/1.5000994

    Article  CAS  Google Scholar 

  17. S.B. Moram Sree, B. Chandu, R.S. Venugopal, Femtosecond laser fabricated Ag@Au and Cu@Au alloy nanoparticles for surface enhaned raman spectrosocpy based trace explosives detection. Front Phys (2018). https://doi.org/10.3389/fphy.2018.00028

    Article  Google Scholar 

  18. S.B. Moram Sree, C. Byram, S. Venugopal Rao, Explosives sensing using Ag–Cu alloy nanoparticles synthesized by femtosecond laser ablation and irradiation. RSC Adv. 9, 1517 (2019)

    Article  Google Scholar 

  19. A.B. Dheyab, A.M. Alwan, M.Q. Zayer, Optimizing of gold nanoparticles on porous silicon morphologies for a sensitive carbon monoxide gas sensor device. Plasmonics 14, 501–509 (2019)

    Article  CAS  Google Scholar 

  20. K. Ibrahim, C. Chia-Man, T. Kun-Lin, H. Steven, A. Wageeh, K. Vincent, Gold nanofilm-coated porous silicon as surface-enhanced raman scattering substrate. Appl. Sci. 9(22), 4806 (2019). https://doi.org/10.3390/app9224806

    Article  CAS  Google Scholar 

  21. W. Kaiqiang, S. Da-Wen, P. Hongbin, W. Qingyi, Surface-enhanced Raman scattering of core-shell Au@Ag nanoparticles aggregates for rapid detection of difenoconazole in grapes. Talanta 191, 449–456 (2019)

    Article  Google Scholar 

  22. A.H. Duaa, M.A. Alwan, F.J. Muslim, An investigation of structural properties of monometallic (Ag, Pd) and bimetallic (Ag@ Pd) nanoparticles growth on macro porous silicon. Int. J. Nanoelectron. Mater. 11, 461–472 (2018)

    Google Scholar 

  23. S. Sergii, M. Kamila, G. Kristina, Y. Zarina, B. Rostislav, Nanoparticle–nanoparticle vs. nanoparticle–substrate hot spot contributions to the SERS signal: studying Raman labelled monomers, dimers and trimmers. Phys. Chem. Chem. Phys. 19, 4478–4487 (2017)

    Article  Google Scholar 

  24. E. Rodrigo, S. Alan, R. Alvaro, A. Alvaro, B. Daniel, M. Jose, L. Janet, P. Ramiro, Study of PtPd bimetallic nanoparticles for fuel cell applications. Mater. Res. 20(5), 1193–1200 (2017)

    Article  Google Scholar 

  25. W. Ke-Jun, G. Yunhu, T. Laura, Continuous synthesis of hollow silver–palladium nanoparticles for catalytic applications. Faraday Discuss. 208, 427–441 (2018)

    Article  Google Scholar 

  26. K.H. Walid, M.A. Alwan, S. Doaa, Controllable formation of plasmonic gold nanoparticles by pulsed laser–induced etching. Opt Quant. Electron. 52, 351 (2020)

    Article  Google Scholar 

  27. Z. Chen, Li. Yongyu, P. Yankun, Xu. Tianfeng, Detection of chlorpyrifos in apples using gold nanoparticles based on surface enhanced Raman spectroscopy. Int J Agric & Biol Eng 8(5), 113–120 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alwan M. Alwan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulaiman, D., Alwan, A.M. & Hamoudi, W.K. Enhanced pesticides’ limit of detection using bimetallic alloys nanoparticles. J Mater Sci: Mater Electron 32, 18689–18698 (2021). https://doi.org/10.1007/s10854-021-06381-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06381-9

Navigation