Abstract
In this paper we show for the first time the possibility to direct grow and tune the size and optical properties of high quality InAs/GaAs quantum dots on transferable crystalline silicon nanomembranes. The transferable silicon nanomembranes have been grown via in-situ H2 prebake of porous silicon in Ultra High Vacuum Chemical vapour Deposition (UHV-CVD) reactor. Flat and continuous transferable crystalline nanomembranes with thicknesses below 30 nm have been obtained. The mechanical strain in the silicon nanomembranes has been tuned via sintering temperature between 900 and 1100 °C for the direct crystalline growth of transferable InAs/GaAs (QDs)/Si foils. The size and band gap energy of these InAs/GaAs quantum dots are tuned via strain engineering in silicon nanomembranes. Several advanced techniques such as Scanning Electron Microscopy (SEM), High-Resolution Transmission Electron Microscopy (HR-TEM), X-Ray Diffraction (XRD), Photoluminescence (PL) spectroscopy are used to investigate the structural and optical properties of transferable silicon nanomembranes and the grown InAs/GaAs QDs. High quality InAs/GaAs QDs with tuned sizes grown on flat and continuous transferable crystalline nanomembranes have been obtained. The obtained results have shown that this novel process allows the growth of well separated InAs/GaAs QDs with well defined shape, high density around 2 × 1010/cm2 and a well controlled size variation as function of the substrate strain between 2 and 10 nm. The high quality of the structural and optical properties of the InAs/GaAs QDs monolithically grown on a transferable Si nanomembranes and its compatibility with standard Si solar cells technologies offer a great opportunity for growing a cheap and high performance InAs/GaAs quantum dots/Si third generation solar cells and microelectronic devices.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
G. Alova, Nat. Energy 5, 920–927 (2020)
J.A. Luceño-Sánchez, A.M. Díez-Pascual, R.P. Capilla, Int. J. Mol. Sci. 20, 976 (2019)
D.W. Cyrs, H.J. Avens, Z.A. Capshaw, A.R. Kingsbury, J. Sahmel, B.E. Tvermoes, Energy Policy 68, 524–533 (2014)
A. Babayigit, D. Duy Thanh, A. Ethirajan, J. Manca, M. Muller, H.-G. Boyen, B. Conings, Sci. Rep. 6(1), 18721 (2016)
M. Choi, F.P. García de Arquer, A.H. Proppe et al., Nat. Commun. 11, 103 (2020)
I. Berbezier, M. Aouassa, A. Ronda, L. Favre, M. Bollani, R. Sordan, A. Delobbe, P. Sudraud, J. Appl. Phys. 113(6), 064908 (2013)
M. Aouassa, L. Favre, A. Ronda, H. Maaref, I. Berbezier, N. J. Phys. 14(6), 063038 (2012)
P.K. Nayak, S. Mahesh, H.J. Snaith et al., Nat. Rev. Mater. 4, 269–285 (2019)
M.A. Basit, M.A. Abbas, H.M. Naeem, I. Ali, E. Jang, J.H. Bang, T. Joo Park, Mater. Res. Bull. 127, 110858 (2020)
H. Fu, V. Ramalingam, H. Kim, C. Lin, X. Fang, H.N. Alshareef, H. He Jr., Adv. Energy Mater. 9(22), 1900180 (2019)
E.S. Jung, M.A. Basit, M.A. Abbas, I. Ali, D.W. Kim, Y.M. Park, T.J. Park, Sol. Energy Mater. Sol. Cells 218, 110753 (2020)
W. Yang, K. Hu, F. Teng, J. Weng, Y. Zhang, X. Fang, Nano Lett. 18(8), 4697–4703 (2018). https://doi.org/10.1021/acs.nanolett.8b00988
W. Yang, J. Chen, Y. Zhang, Y. Zhang, J.-H. He, X. Fang, Adv. Funct. Mater. (2019). https://doi.org/10.1002/adfm.201808182
S.-Y. Lin, Y.-J. Tsai, S.-C. Lee, Jpn. J. Appl. Phys. 40, L1290–L1292 (2010)
J. Gan, J. He, R.L.Z. Hoye, A. Mavlonov, F. Raziq, J.L. MacManus-Driscoll, X. Wu, S. Li, X. Zu, Y. Zhan, X. Zhang, L. Qiao, ACS Energy Lett. 4(6), 1308–1320 (2019)
F. Li, S. Zhou, J. Yuan, C. Qin, Y. Yang, J. Shi, X. Ling, Y. Li, W. Ma, ACS Energy Lett. 4(11), 2571 (2019)
A.P. Litvin, I.D. Skurlov, I.G. Korzhenevskii, A. Dubavik, S.A. Cherevkov, A.V. Sokolova, P.S. Parfenov, D.A. Onishchuk, V.V. Zakharov, E.V. Ushakova, X. Zhang, A.V. Fedorov, A.V. Baranov, J. Phys. Chem. C 123(3), 3115–3121 (2019)
N.S. Beattie, P. See, G. Zoppi, P. Ushasree, M. Duchamp, I. Farrer, D.A. Ritchie, S. Tomic, ACS Photonics 4(11), 2745–2750 (2017)
A. Creti, V. Tasco, G. Montagna, I. Tarantini, A. Salhi, A. Passaseo, M. Lomascolo, ACS Appl. Nano Mater. 3(8), 8365–8371 (2020)
I. Berbezier, J.N. Aqua, M. Aouassa, L. Favre, S. Escoubas, A. Gouyé, Phys. Rev. B 90(3), 035315 (2014)
M. Aouassa, S. Escoubas, A. Ronda, L. Favre, S. Gouder, R. Mahamdi, Appl. Phys. Lett. 101(23), 233105 (2012)
M. Aouassa, I. Jadli, L.S. Hassayoun, H. Maaref, G. Panczer, L. Favre, Superlattices Microstruct. 112, 493–498 (2017)
A. Lukianov, K. Murakami, C. Takazawa, M. Ihara, Appl. Phys. Lett. 108, 213904 (2016)
C. Chiang, B.T. Lee, Sci. Rep. 9, 12631 (2019)
C.A. Mercado-Ornelas, I.E. Cortes-Mestizob, E. Eugenio-López, L.I. Espinosa-Vega, D. García-Compean, I. Lara-Velázquez, AYu. Gorbatchev, L. Zamora-Peredo, C.M. Yee-Rendonf, V.H. Méndez-Garcia, Physica E 124, 114217 (2020)
M. Karim, R. Martini, H.S. Radhakrishnan, K. van Nieuwenhuysen, V. Depauw, W. Ramadan, I. Gordon, J. Poortmans, Nanoscale Res. Lett. 9(1), 348 (2014)
V. Labunov, V. Bondarenko, L. Glinenko, A. Dorofeev, L. Tabulina, Thin Solid Films 137, 123–134 (1986)
A.M. Raya, M. Friedl, S. Martí-Sánchez, V.G. Dubrovskii, L. Francaviglia, B. Alén, N. Morgan, G. Tütüncüoglu, Q.M. Ramasse, D. Fuster, J.M. Llorens, J. Arbiol, A.F. Morral, Nanoscale 12, 815 (2020)
B. Shi, L. Wang, A.A. Taylor, S.S. Brunelli, H. Zhao, B. Song, J. Klamkin, Appl. Phys. Lett. 114, 172102 (2019)
J. Zhang, W. Jie, T. Wang, D. Zeng, B. Yang, J. Cryst. Growth 306, 33 (2007)
Y. Wan, Q. Li, Y. Geng, B. Shi, K.M. Lau, Appl. Phys. Lett. 107, 081106 (2015)
Acknowledgements
The authors extend their appreciation to the Deanship of Scientific Research at Jouf University for funding this work through Research Grant No. DSR2020-02-446.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Aouassa, M., Franzò, G., M’Ghaieth, R. et al. Direct growth and size tuning of InAs/GaAs quantum dots on transferable silicon nanomembranes for solar cells application. J Mater Sci: Mater Electron 32, 18251–18263 (2021). https://doi.org/10.1007/s10854-021-06368-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-021-06368-6