Skip to main content

Improved efficiency in dye-sensitized solar cell via surface modification of TiO2 photoelectrode by spray pyrolysis

Abstract

Pure TiO2 and surface-modified TiO2 (SMT) films have been developed using zinc acetate solution on fluorine-doped SnO2 (FTO) substrates via spray pyrolysis technique for the application in dye-sensitized solar cells (DSSCs). X-ray diffraction (XRD) profiles indicate that pure TiO2 and SMT exhibit the same crystal structure. Optical absorption studies reveal that there is no significant absorption difference between SMT and pure TiO2. Impedance measurements show that ZnO layer-covered TiO2 nanoparticles particularly increase the impedance and also suppress the reverse transmission of photo-induced electrons ejected from SMT electrode to the electrolyte. Surface morphological and elemental studies have been performed using field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray analysis (EDX) respectively. The photoelectrochemical (JV curves) values of DSSCs for pure TiO2 and SMT thin films have been compared. The results show that the photoelectric current (JSC) of pure TiO2 increased from 16.73 to 18.09 mA cm−2. Additionally, open-circuit voltage (VOC) of DSSCs containing SMT thin films appreciably changed from 0.71 to 0.75 V. This indicates that the ZnO layer on TiO2 nanoparticles contributes to the surface resistance, which impedes the flow of back-scattered electrons to the electrolyte significantly. The incident light conversion into power efficiency of the DSSCs has been increased from 8.25 to 9.3%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    B.O. Regan, M. Grätzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  2. 2.

    S.J. Wu, H.W. Han, Q.D. Tai, S. Xu, C.G. Zhou, Y. Yang, H. Hu, B.-L. Chen, B. Sebo, Nanotechnology 19, 215704 (2008)

    Article  CAS  Google Scholar 

  3. 3.

    X.-T. Xu, L. Pan, X.-W. Zhang, L. Wang, J.-J. Zou, Adv. Sci. (Weinh.) 6(2), 1801505 (2019)

    Google Scholar 

  4. 4.

    M. Ye, X. Wen, M.-G. Wang, J. Iocozzia, N. Zhang, C.J. Lin, Z.Q. Lin, Mater. Today 18, 155 (2015)

    CAS  Article  Google Scholar 

  5. 5.

    J.-P. Correa-Baena, W.-G. Tress, K. Domanski, E.-H. Anaraki, S.-H. Turren-Cruz, B. Roose, P.P. Boix, M. Grätzel, M. Saliba, A. Abate, A. Hagfeldt, Energy Environ. Sci. 10, 1207 (2017)

    CAS  Article  Google Scholar 

  6. 6.

    S. Lattante, Electronics 3, 132 (2014)

    CAS  Article  Google Scholar 

  7. 7.

    D. Dastan, Appl. Phys. A 123, 699 (2017)

    Article  CAS  Google Scholar 

  8. 8.

    V.M. Mohan, M. Shimomura, K. Murakami, J. Nanosci. Nanotechnol. 11, 1 (2011)

    Article  CAS  Google Scholar 

  9. 9.

    D. Dastan, J. At. Mol. Condens. Nano Phys. 2, 109 (2015)

    Google Scholar 

  10. 10.

    V. Madhu Mohan, K. Murakami, Jpn. J. Appl. Phys. 51, 2 (2012)

    Google Scholar 

  11. 11.

    D. Dastan, S.L. Panahi, A. Yengantwar, A.G. Banpurkar, Adv. Sci. Lett. 22, 950 (2016)

    Article  Google Scholar 

  12. 12.

    S. Neubert, A. Ramakrishnan, J. Strunk, H.Y. Shi, B.T. Mei, L.D. Wang, M. Bledowski, D.A. Guschin, M. Kauer, Y.M. Wang, M. Muhler, R. Beranek, ChemPlusChem 79, 163 (2014)

    CAS  Article  Google Scholar 

  13. 13.

    L.-Q. Sun, J. Guan, Q. Xu, X.-Y. Yang, J. Wang, X.-Y. Hu, Polymers (Basel) 10, 1248 (2018)

    Article  CAS  Google Scholar 

  14. 14.

    A. Ramakrishnan, S. Neubert, B. Mei, J. Strunk, L.D. Wang, M. Bledowski, M. Muhler, R. Beranek, Chem. Commun. 48, 8556 (2012)

    CAS  Article  Google Scholar 

  15. 15.

    Q. Zhou, J. Zhou, M. Zeng, G. Wang, C. Yongjun, L. Shiwei, Nanoscale Res. Lett. 12, 261 (2017)

    Article  CAS  Google Scholar 

  16. 16.

    N. Vaenas, T. Stergiopoulos, A.G. Kontos, V. Likodimos, P. Falaras, Electrochim. Acta 113, 490 (2013)

    CAS  Article  Google Scholar 

  17. 17.

    A.M. Abd-Elnaiem, A. Gabe, Int. J. Electrochem. Sci. 8, 9741 (2013)

  18. 18.

    A. Sedghi, H.N. Miankushk, Int. J. Electrochem. Sci. 7, 12078 (2012)

    CAS  Google Scholar 

  19. 19.

    L-T. Yan, F-L. Wu, L. Peng, L-J. Zhang, P-J. Li, S-Y. Dou,and T-X. Li, Inter. National. J. Photo Energy, 2012, Article ID 613969 | https://doi.org/10.1155/2012/613969 (2012)

  20. 20.

    Z. Sun, J.-H. Kim, Y. Zhao, D. Attard, S.X. Dou, Chem. Commun. 49, 966 (2013)

    CAS  Article  Google Scholar 

  21. 21.

    M.I. Khan, J. Results Phys. 9, 359 (2018)

    Article  Google Scholar 

  22. 22.

    M. Rani, S.K. Tripati, J. Electron. Mater. 44, 1151 (2015)

    CAS  Article  Google Scholar 

  23. 23.

    Y.H. Jung, K.H. Park, J.S. Oh, D.H.C.K. Kim, Nanoscale Res. Lett. 8, 473 (2013)

    Article  CAS  Google Scholar 

  24. 24.

    W.-H. Chen, Q. Luo, X.-S. Deng, J.-F. Zheng, C.-X. Zhang, X.-H. Chen, S.-M. Huang, RSC Adv. 7, 54068 (2017)

    CAS  Article  Google Scholar 

  25. 25.

    R.D. Silva, L.G.C. Rego, J. Freire, J. Rodriguez, D. Laria, V.S. Batista, J. Phys. Chem. C 114, 19433 (2010)

    Article  CAS  Google Scholar 

  26. 26.

    M.M. Maitani, K. Tanaka, Q. Shen, T. Toyoda, Y. Wada, Phys. Chem. Chem. Phys. 19, 22129 (2017)

    CAS  Article  Google Scholar 

  27. 27.

    S.H. Kang, J.Y. Kim, Y.E. Sung, Electrochim. Acta 52, 5242 (2007)

    CAS  Article  Google Scholar 

  28. 28.

    K. Shan, Z.-Z. Yi, X.-T. Yin, L. Cui, D. Dastan, H. Garmestani, F.M. Alamgir, J. Alloys Compd. 855, 157465 (2021)

    CAS  Article  Google Scholar 

  29. 29.

    K. Shan, Z.-Z. Yi, X.-T. Yin, D. Dastan, S. Dadkhah, B.T. Coates, H. Garmestani, Adv. Powder Technol. 31, 4657 (2020)

    CAS  Article  Google Scholar 

  30. 30.

    V.M. Mohan, M. Shimomura, K. Murakami, J. Nanosci. Nanotechnol. 11, 1 (2011)

    Article  CAS  Google Scholar 

  31. 31.

    K. Shan, F.R. Zhai, Z.-Z. Yi, X.-T. Yin, D. Dastan, F. Tajabadi, A. Jafari, S. Abbasi, Surf. Interfaces 23, 100905 (2021)

    CAS  Article  Google Scholar 

  32. 32.

    M.C. Kao, H.Z. Chen, S.L. Young, Appl. Phys. A 97, 469 (2009)

    CAS  Article  Google Scholar 

  33. 33.

    D. Dastan, N.B. Chaure, J. Mater. Mech. Manuf. 2, 21 (2014)

    CAS  Google Scholar 

  34. 34.

    R. Shakoury, A. Arman, S. Talu, D. Dastan, C. Luna, S. Rezaee, Opt. Quantum Electron. 52, 270 (2020)

    CAS  Article  Google Scholar 

  35. 35.

    O. Ola, M.M. Maroto-Valer, J. Photochem. Photobiol. C 24, 64 (2015)

    Article  CAS  Google Scholar 

  36. 36.

    M. De. Laurentis, A. Irace, J. Solid State Phys. (2014). https://doi.org/10.1155/2014/291469

    Article  Google Scholar 

  37. 37.

    H. Dong, S.-H. Pang, Y. Zhang, D.-Z. Chen, W.-D. Zhu, H. Xi, J.-J. Chang, J.-C. Zhang, C.-F. Zhang, Y. Hao, Nanomaterials 8, 720 (2018)

    Article  CAS  Google Scholar 

  38. 38.

    E. Ronca, M.C. Pastore, L. Belpassi, F. Tarantelli, F.D. Angelis, Energy Environ. Sci. 6, 183 (2013)

    CAS  Article  Google Scholar 

  39. 39.

    H. Zuo, W. Fu, R. Fan, D. Dastan, H. Wang, Z. Shi, Mater. Lett. 263, 127217 (2020)

    CAS  Article  Google Scholar 

  40. 40.

    N. Haghnegahdar, M.A. Tarighat, D. Dastan, J. Mater. Sci. Mater. Electron. 32, 5602 (2021)

    CAS  Article  Google Scholar 

  41. 41.

    M. Asadzadeh, F. Tajabadi, D. Dastan, P. Sangpour, Z. Shi, N. Taghavinia, Ceram. Int. 47, 5487–5494 (2021)

    CAS  Article  Google Scholar 

  42. 42.

    T. Suresh, J.-Y. Park, C.-T. Thanh Thuy, D.-K. Lee, B.-K. Min, H.-J. Yun, J.-H. Kim, ACS Sustain. Chem. Eng. 6, 13025 (2018)

    Article  CAS  Google Scholar 

  43. 43.

    M. Kaur, N.K. Verma, J. Mater. Sci. Technol. 30, 328 (2014)

    CAS  Article  Google Scholar 

  44. 44.

    S.-Y. Kuo, J.-F. Yang, F. Lai, Nanoscale Res. Lett. 20149, 206 (2014)

    Article  CAS  Google Scholar 

  45. 45.

    X.-L. Zhang, E.M.J. Johansson, J. Mater. Chem. A 5, 303 (2017)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS, Grant-in-Aid for Scientific Research (C) (21560325).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Varishetty Madhu Mohan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Madhu Mohan, V., Murakam, K., Jonnalagadda, M. et al. Improved efficiency in dye-sensitized solar cell via surface modification of TiO2 photoelectrode by spray pyrolysis. J Mater Sci: Mater Electron 32, 18231–18239 (2021). https://doi.org/10.1007/s10854-021-06366-8

Download citation