Skip to main content
Log in

Crystal structure and physicochemical properties of a new optofunctional metal-organic cocrystal delivering intermolecular charge-transfer-enhanced nonlinear optical and optical limiting properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Crystal structure, physicochemical and intermolecular charge-transfer-enhanced third order nonlinear optical properties of a new metal-organic cocrystal \(\{[\hbox {NiCl}_2(\hbox {C}_4\hbox {H}_{11}\hbox {N}_2)_2(\hbox {OH}_2)_2](\hbox {Cl})_2 (\hbox {OH}_2)_2\hbox {n}\}\) (PNi) is reported. An intermediate piperazinium chloride created during the pH optimization reacts with the metal centre (Ni), forming mono-substituted piperazine metal-organic cocrystal. The PNi adopts octahedral coordination geometry with triclinic (\(P\overline{1}\)) crystal system at its single crystalline phase. The crystal packing stabilization via \(\hbox {O}-\hbox {H}\cdots \hbox {Cl}\), \(\hbox {C}-\hbox {H}\cdots \hbox {Cl}\) and \(\hbox {O}-\hbox {H}\cdots \hbox {O}\) noncovalent charge-transfer interactions is observed from single-crystal X-ray diffraction analysis. The PNi single crystal is thermally stable up to 87 \(^\circ\)C. The \(\hbox {H}_2\hbox {O}\) molecules tend to evaporate at lower temperatures bringing moderate, rather sufficient thermal stability for using the title material in lasing applications. Vickers microhardness study revealed that the title crystal belongs to the soft material category. Investigation on dielectric properties showed polar dielectric nature of the material with consistent electronic polarizability (\(\alpha =1.11\times 10^{22}\ \hbox {cm}^3\)). The optical bandgap of 5.17 eV from UV-DRS spectroscopic analysis shows PNi belongs to the wide bandgap material category. The third order nonlinear optical absorption (\(\beta\)), nonlinear refractive index (\(n_2\)) and third order nonlinear optical susceptibility (\(\chi ^{(3)}\)) of PNi cocrystal using 532 nm CW DPSS laser are measured to be \((0.067\pm 0.001)\times 10^{-4}\ \hbox {cmW}^{-1}\), \((0.211\pm 0.0057)\times 10^{-8}\ \hbox {cm}^2\hbox {W}^{-1}\) and \((0.511\pm 0.09)\times 10^{-6}\) esu, respectively. Intermolecular charge-transfer interactions and electronic polarizability well influence nonlinear optical properties and are proved possible by calculating the intermolecular charge-transfer interactions at the B3LYP/6-31G(d,p) level of calculations. Further, the nonlinear absorption coefficient (\(\beta\)) was found to vary with the laser intensities, explicitly indicating the presence of excited state absorption assisted sequential 2PA in PNi cocrystal. Low onset limiting threshold for nanosecond pulsed and continuous-wave laser irradiance (\((1.66\pm 0.02)\times 10^{12}\ \hbox {Wm}^{-2}\) and \((0.804\pm 0.02)\times 10^{03}\) \(\hbox {Wcm}^{-2}\), respectively) promotes the title material as an efficient candidate for optical limiting application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The crystallographic information file (CIF) of PNi cocrystal is deposited in Cambridge Crystallographic Data Centre (CCDC) with deposition number 1973202.

References

  1. Q. Zheng, H. Zhu, S.C. Chen, C. Tang, E. Ma, X. Chen, Nat. Photon. 7(3), 234 (2013)

    Article  CAS  Google Scholar 

  2. H.S. Quah, W. Chen, M.K. Schreyer, H. Yang, M.W. Wong, W. Ji, J.J. Vittal, Nat. Commun. 6(1), 1 (2015)

    Article  CAS  Google Scholar 

  3. W. Denk, J.H. Strickler, W.W. Webb, Science 248(4951), 73 (1990)

    Article  CAS  Google Scholar 

  4. S.M. Hsu, F.Y. Wu, H. Cheng, Y.T. Huang, Y.R. Hsieh, D.T.H. Tseng, M.Y. Yeh, S.C. Hung, H.C. Lin, Adv. Healthcare Mater. 5(18), 2406 (2016)

    Article  CAS  Google Scholar 

  5. Z. Shi, Y. Zhou, L. Zhang, C. Mu, H. Ren, D. Yang, H.M. Asif et al., RSC Adv. 4(91), 50277 (2014)

    Article  CAS  Google Scholar 

  6. V. Siva, S.A. Bahadur, A. Shameem, A. Murugan, S. Athimoolam, M. Suresh, Opt. Mater. 96, 109290 (2019)

    Article  CAS  Google Scholar 

  7. S. Parola, B. Julián-López, L.D. Carlos, C. Sanchez, Adv. Func. Mater. 26(36), 6506 (2016)

    Article  CAS  Google Scholar 

  8. B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, A.A. Heikal, S.M. Kuebler, I.Y.S. Lee, D. McCord-Maughon et al., Nature 398(6722), 51 (1999)

    Article  CAS  Google Scholar 

  9. L.D. Zarzar, B. Swartzentruber, J.C. Harper, D.R. Dunphy, C.J. Brinker, J. Aizenberg, B. Kaehr, J. Am. Chem. Soc. 134(9), 4007 (2012)

    Article  CAS  Google Scholar 

  10. X. Zhou, Y. Chen, J. Su, X. Tian, Y. Luo, L. Luo, RSC Adv. 7(82), 52125 (2017)

    Article  CAS  Google Scholar 

  11. K. Ogawa, Y. Kobuke, Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 8(3), 269 (2008)

    CAS  Google Scholar 

  12. A. Kachynski, A. Pliss, A. Kuzmin, T. Ohulchanskyy, A. Baev, J. Qu, P. Prasad, Nat. Photon. 8(6), 455 (2014)

    Article  CAS  Google Scholar 

  13. C.C. Corredor, Z.L. Huang, K.D. Belfield, A.R. Morales, M.V. Bondar, Chem. Mater. 19(21), 5165 (2007)

    Article  CAS  Google Scholar 

  14. H. Xu, Y. Song, H. Hou, Inorg. Chim. Acta 357(12), 3541 (2004)

    Article  CAS  Google Scholar 

  15. H. Xu, Y. Song, L. Mi, H. Hou, M. Tang, Y. Sang, Y. Fan, Y. Pan, Dalton Trans. (6), 838 (2006)

  16. H. Hou, Y. Song, H. Xu, Y. Wei, Y. Fan, Y. Zhu, L. Li, C. Du, Macromolecules 36(4), 999 (2003)

    Article  CAS  Google Scholar 

  17. M.C. Suen, T.C. Keng, J.C. Wang, Polyhedron 21(27–28), 2705 (2002)

    Article  CAS  Google Scholar 

  18. Y. Niu, H. Hou, Y. Wei, Y. Fan, Y. Zhu, C. Du, X. Xin, Inorg. Chem. Commun. 4(7), 358 (2001)

    Article  CAS  Google Scholar 

  19. L. Casella, J.A. Ibers, Inorg. Chem. 20(8), 2438 (1981)

    Article  CAS  Google Scholar 

  20. J.G. Gibson, E.D. McKenzie, J. Chem. Soc. Dalton Trans. (9), 989 (1974)

  21. J. Ratilainen, K. Airola, R. Fröhlich, M. Nieger, K. Rissanen, Polyhedron 18(17), 2265 (1999)

    Article  CAS  Google Scholar 

  22. D. Herová, P. Pazdera, Mon. Chem. 146(4), 653 (2015)

    Article  CAS  Google Scholar 

  23. C.R. Glasson, L.F. Lindoy, G.V. Meehan, Coord. Chem. Rev. 252(8–9), 940 (2008)

    Article  CAS  Google Scholar 

  24. D. Venkataraman, Y. Du, S.R. Wilson, K.A. Hirsch, P. Zhang, J.S. Moore, J. Chem. Educ. 74(8), 915 (1997)

    Article  CAS  Google Scholar 

  25. S.L. Li, J.Y. Wu, Y.P. Tian, Y.W. Tang, M.H. Jiang, H.K. Fun, S. Chantrapromma, Opt. Mater. 28(8–9), 897 (2006)

    Article  CAS  Google Scholar 

  26. S.S. Attar, L. Marchiò, L. Pilia, M.F. Casula, D. Espa, A. Serpe, M. Pizzotti, D. Marinotto, P. Deplano, New J. Chem. 43(32), 12570 (2019)

    Article  CAS  Google Scholar 

  27. S. Wolff, D. Grimwood, J. McKinnon, M. Turner, D. Jayatilaka, M. Spackman. CrystalExplorer 17, University of Western Australia (2017). http://hirshfeldsurface.net

  28. J.J. McKinnon, D. Jayatilaka, M.A. Spackman, Chem. Commun. (37), 3814 (2007)

  29. J.J. McKinnon, M.A. Spackman, A.S. Mitchell, Acta Crystallogr. B 60(6), 627 (2004)

    Article  CAS  Google Scholar 

  30. M.J. Turner, J.J. McKinnon, D. Jayatilaka, M.A. Spackman, CrystEngComm 13(6), 1804 (2011)

    Article  CAS  Google Scholar 

  31. M.D. Guiver, G.P. Robertson, S. Foley, Macromolecules 28(23), 7612 (1995)

    Article  CAS  Google Scholar 

  32. T.A. Hegde, A. Dutta, R.M. Jauhar, P. Karuppasamy, M.S. Pandian, M. Abith, T.S. Girisun, G. Vinitha, Opt. Mater. 107, 110033 (2020)

    Article  CAS  Google Scholar 

  33. T.A. Hegde, A. Dutta, G. Vinitha, Appl. Phys. A 124(12), 808 (2018)

    Article  CAS  Google Scholar 

  34. K. Sangwal, Mater. Chem. Phys. 63(2), 145 (2000)

    Article  CAS  Google Scholar 

  35. E. Onitsch, Mikroskopie 95(15), 12 (1956)

    Google Scholar 

  36. M. Hanneman, Manchu 23, 135 (1941)

    Google Scholar 

  37. P. Surendran, A. Lakshmanan, S.S. Priya, K. Balakrishnan, P. Rameshkumar, T.A. Hegde, G. Vinitha, G. Ramalingam, A.A. Raj, Appl. Phys. A 126(4), 1 (2020)

    Article  CAS  Google Scholar 

  38. D. Griffiths, Introduction to Electrodynamics, 4th Edn (Harlow, 2014)

  39. D.R. Penn, Phys. Rev. 128(5), 2093 (1962)

    Article  CAS  Google Scholar 

  40. N. Ravindra, R. Bhardwaj, K.S. Kumar, V. Srivastava, Infrared Phys. 21(6), 369 (1981)

    Article  CAS  Google Scholar 

  41. P. Karuppasamy, V. Sivasubramani, M.S. Pandian, P. Ramasamy, RSC Adv. 6(110), 109105 (2016)

    Article  CAS  Google Scholar 

  42. B.R. Puri, L. Sharma, Principles of Inorganic Chemistry (1976)

  43. R. Reddy, Y.N. Ahammed, Infrared Phys. Technol. 36(5), 825 (1995)

    Article  CAS  Google Scholar 

  44. S. Yuvaraj, N. Manikandan, G. Vinitha, Opt. Mater. 73, 428 (2017)

    Article  CAS  Google Scholar 

  45. G. Wyszecki, JOSA 44(10), 787 (1954)

    Article  CAS  Google Scholar 

  46. R.G. Kuehni, JOSA 66(5), 497 (1976)

    Article  CAS  Google Scholar 

  47. T.A. Hegde, A. Dutta, T.S. Girisun, M. Abith, G. Vinitha, J. Mater. Sci.: Mater. Electron. 30(20), 18885 (2019)

    CAS  Google Scholar 

  48. R.L. Sutherland, Handbook of Nonlinear Optics (CRC Press, Boca Raton, 2003)

    Book  Google Scholar 

  49. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26(4), 760 (1990)

    Article  CAS  Google Scholar 

  50. T.A. Hegde, A. Dutta, V. Gandhiraj, Int. J. Eng. Technol. Innov. 9(4), 257 (2019)

    Google Scholar 

  51. S. Medhekar, R. Kumar, S. Mukherjee, R. Choubey, in AIP Conference Proceedings, vol. 1512 (American Institute of Physics, 2013), vol. 1512, pp. 470–471

  52. R. Choubey, S. Medhekar, R. Kumar, S. Mukherjee, S. Kumar, J. Mater. Sci.: Mater. Electron. 25(3), 1410 (2014)

    CAS  Google Scholar 

  53. B.K. Dadhich, I. Kumar, R.K. Choubey, B. Bhushan, A. Priyam, Photochem. Photobiol. Sci. 16(10), 1556 (2017)

    Article  CAS  Google Scholar 

  54. P. Surendran, A. Lakshmanan, S.S. Priya, P. Geetha, P. Rameshkumar, K. Kannan, T.A. Hegde, G. Vinitha, Inorg. Chem. Commun. 124, 108397 (2021)

    Article  CAS  Google Scholar 

  55. S. Pandiyan, L. Arumugam, S.P. Srirengan, R. Pitchan, P. Sevugan, K. Kannan, G. Pitchan, T.A. Hegde, V. Gandhirajan, ACS Omega 5(47), 30363 (2020)

    Article  CAS  Google Scholar 

  56. R. Choubey, R. Trivedi, M. Das, P. Sen, P. Sen, S. Kar, K. Bartwal, R. Ganeev, J. Cryst. Growth 311(8), 2597 (2009)

    Article  CAS  Google Scholar 

  57. T.A. Hegde, A. Dutta, T.S. Girisun, G. Vinitha, Opt. Mater. 117, 111194 (2021)

    Article  CAS  Google Scholar 

  58. P. Antony, S.J. Sundaram, J.V. Ramaclus, S.A. Inglebert, A.A. Raj, S. Dominique, T.A. Hegde, G. Vinitha, P. Sagayaraj, J. Mol. Struct. 1196, 699 (2019)

    Article  CAS  Google Scholar 

  59. S. Ananda, H.A. Khamees, M. Mahendra, C. Kumara, D.J. Prasad, T.A. Hegde, G. Vinitha, J. Mater. Sci.: Mater. Electron. 30(9), 9003–9014 (2021)

  60. D. Shalini, P. Vinothkumar, K. Sathyamoorthy, P. Muralimanohar, T.A. Hegde, G. Vinitha, M. Mohapatra, P. Murugasen, J. Mol. Struct. 1225, 129098 (2021)

    Article  CAS  Google Scholar 

  61. L.W. Tutt, T.F. Boggess, Prog. Quantum Electron. 17(4), 299 (1993)

    Article  CAS  Google Scholar 

  62. C. Dai, Z. Wei, Z. Chen, X. Liu, J. Fan, J. Zhao, C. Zhang, Z. Pang, S. Han, Adv. Opt. Mater. 7(22), 1900838 (2019)

    Article  CAS  Google Scholar 

  63. M.A. Spackman, Cryst. Growth Des. 15(11), 5624 (2015)

    Article  CAS  Google Scholar 

  64. C.F. Mackenzie, P.R. Spackman, D. Jayatilaka, M.A. Spackman, IUCrJ 4(5), 575 (2017)

    Article  CAS  Google Scholar 

  65. G. Undavalli, M. Joseph, R. Philip, B. Anand, G.N. Rao et al., Opt. Mater. 115, 111024 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by DAE-BRNS, Government of India [34/14/55/2014-BRNS/2014].

Author information

Authors and Affiliations

Authors

Contributions

TAH: conceptualization; methodology; data curation; investigation; software; formal analysis; validation; writing—original draft, review and editing. TCSG: writing—review and editing; validation. GV: writing—review and editing; supervision; project administration; funding acquisition.

Corresponding author

Correspondence to G. Vinitha.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 924 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegde, T.A., Girisun, T.C.S. & Vinitha, G. Crystal structure and physicochemical properties of a new optofunctional metal-organic cocrystal delivering intermolecular charge-transfer-enhanced nonlinear optical and optical limiting properties. J Mater Sci: Mater Electron 32, 18669–18688 (2021). https://doi.org/10.1007/s10854-021-06364-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06364-w

Navigation