Skip to main content
Log in

Structural, dielectric, magnetic and magneto-dielectric properties of (1 − x)BiFeO3–(x)CaTiO3 composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

(1 − x)BiFeO3–(x)CaTiO3 [(1 − x)BFO–(x)CTO, (x = 0, 0.1, 0.2 and 0.3)] composites were synthesized using sol–gel chemical method. Rietveld refinement was performed on X-ray diffraction data of all the samples reflect rhombohedral structure for x = 0, 0.1, 0.2 and the mixture of rhombohedral and orthorhombic structure for x = 0.3. The Field Emission Scanning Electron Microscope (FESEM) investigation confirms the microstructure consists of randomly oriented, homogenous, and non-uniform grains. The dielectric permittivity (ε) and tangent loss (tan δ) decreases with increasing frequency and show dielectric anomalies (as a hump) at different temperatures for different compositions. The incorporation of CTO decreases three order of leakage current (up to x = 0.2) and significantly improve the magnetization and magneto-dielectric coupling. The frequency-dependent ac conductivity obeys Jonscher’s power law with large ac conductivity dispersion for higher frequencies with increasing CTO concentration. The variations of ac conductivity with the inverse of temperature obey the Arrhenius equation and show negative temperature coefficient of resistance (NTCR) behaviour. The ferromagnetic (FM) properties in BFO–CTO increases significantly with the increase of CTO concentration. The coercive field increases with increasing CTO concentration suggesting a competition between the antiferromagnetic and ferromagnetic ordering. The BFO–CTO samples exhibit large positive and negative magneto-dielectric coupling effect at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. Ma, J. Hu, Z. Li, C.-W. Nan, Adv. Mater. 23, 1062–1087 (2011)

    Article  CAS  Google Scholar 

  2. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006)

    Article  CAS  Google Scholar 

  3. I. Sosnowska, T.P. Neumaier, E. Steichele, J. Phys. C. Solid State Phys. 15, 4835–4846 (1982)

    Article  CAS  Google Scholar 

  4. S.M. Selbach, T. Tybell, M.A. Einarsrud, Adv. Mater. 20, 3692–3606 (2008)

    Article  CAS  Google Scholar 

  5. F. Kubel, H. Schimid, Acta Crystallogr. B 46, 698–702 (1990)

    Article  Google Scholar 

  6. C. Ederer, N.A. Spaldin, Phys. Rev. B 71, 060401 (2005)

    Article  CAS  Google Scholar 

  7. M. Rawat, K.L. Yadav, J. Alloys Compd. 597, 188–1999 (2014)

    Article  CAS  Google Scholar 

  8. S. Narendra Babu, J.-H. Hsu, Y.S. Chen, J.G. Lin, J. Appl. Phys. 109, 07D904 (2011)

    Article  CAS  Google Scholar 

  9. D.R. Patil, B.K. Chougule, J. Alloys Compd. 470, 531–535 (2009)

    Article  CAS  Google Scholar 

  10. N.M. Burange, S.S. Chougule, D.R. Patil, R.S. Devan, Y.D. Kolekar, B.K. Chougule, J. Alloys Compd. 479, 569–573 (2009)

    Article  CAS  Google Scholar 

  11. P. Kumar, M. Kar, J. Alloys Compd. 584, 566–572 (2014)

    Article  CAS  Google Scholar 

  12. S.H. Jo, S.G. Lee, Y.H. Lee, Nanoscale Res. Lett. 7, 54 (2012)

    Article  Google Scholar 

  13. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2009)

    Article  CAS  Google Scholar 

  14. J. Wang, J. Neaton, H. Zheng, V. Nagarajan, S. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. Schlom, U. Waghmare, Science 299, 1719 (2003)

    Article  CAS  Google Scholar 

  15. T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. Cruz, Y. Chu, C. Ederer, N. Spaldin, Nature 5, 823 (2006)

    Article  CAS  Google Scholar 

  16. J.G. Wu, D.Q. Xiao, J.G. Zhu, Chin. Sci. Bull. 59, 5205 (2014)

    Article  CAS  Google Scholar 

  17. A. Hussain, X. Xu, G. Yuan, Y. Wang, Y. Yang, J. Yin, J. Liu, Z. Liu, Chin. Sci. Bull. 59, 5161 (2014)

    Article  CAS  Google Scholar 

  18. T. Rojac, A. Bencan, B. Malic, G. Tutuncu, J.L. Jones, J.E. Daniels, D. Damjanovic, D.J. Green, J. Am. Ceram. Soc. 97, 1993 (2014)

    Article  CAS  Google Scholar 

  19. Q. Zheng, L. Luo, K.H. Lam, D. Lin, J. Appl. Phys. 116, 184101 (2014)

    Article  CAS  Google Scholar 

  20. G.L. Yuan, S.W. Or, J.M. Liu, Z.G. Liu, Appl. Phys. Lett. 89, 052905 (2006)

    Article  CAS  Google Scholar 

  21. V.R. Palkar, D.C. Malik, S. Bhattacharya, Phys. Rev. B 69, 212102–212103 (2004)

    Article  CAS  Google Scholar 

  22. V.V. Lemanov, A.V. Sotnikov, E. Psminova, M. Weihnacht, R. Kunze, Solid State Commun. 110, 611 (1999)

    Article  CAS  Google Scholar 

  23. I.S. Kim, M. Itoh, T. Nakamura, J. Solid States Chem. 101, 77 (1992)

    Article  CAS  Google Scholar 

  24. Q.Q. Wang, H.J. Zhao, X.M. Chen, J. Appl. Phys. 111, 126101 (2012)

    Article  CAS  Google Scholar 

  25. V. Kumar, A.K. Singh, S. Singh, J. Appl. Phys. 112, 204101 (2017)

    Article  CAS  Google Scholar 

  26. I. Troyanchuk, D. Karpinsky, M. Bushinskii, O. Prokhnenko, M. Kopcevicz, R. Szymczak, J. Pietosa, J. Exp. Theor. Phys. 107, 83–89 (2008)

    Article  CAS  Google Scholar 

  27. D. Karpinsky, I. Troyanchuk, M.V. Bushinsky, S.A. Gavrilov, M.V. Silibin, A. Franz, J. Mater. Sci. 51, 10506–10517 (2016)

    Article  CAS  Google Scholar 

  28. D. Karpinsky, I. Troyanchuk, J. Vidal, N. Sobolev, A. Kholkin, Solid State Commun. 151, 536 (2011)

    Article  CAS  Google Scholar 

  29. S. Kumari, N. Ortega, A. Kumar, J.W. Hubbard, R.S. Katiyar, J. Appl. Phys. 117, 114102 (2015)

    Article  CAS  Google Scholar 

  30. R.K. Dwivedi, D. Kumar, O. Parkash, J. Mater. Sci. 36, 3657–3665 (2001)

    Article  CAS  Google Scholar 

  31. Q. Hang, Z. Xing, X. Zhu, M.Y. Yu, M. Song, J. Zhu, Z. Liu, Ceram Int 38, S411 (2012)

    Article  CAS  Google Scholar 

  32. J.C. Maxwell, Electricity and Magnetism (Oxford University Press, London, 1973)

    Google Scholar 

  33. K.W. Wagner, Ann. Phys. 40, 818 (1993)

    Google Scholar 

  34. E.V. Gopalan, K.A. Malini, S. Saravanan, D. Sakthi Kumar, Y. Yoshida, M.R. Anantharaman, J. Phys. D Appl. Phys. 41, 185005 (2008)

    Article  CAS  Google Scholar 

  35. C.G. Koops, Phys. Rev. 83, 121–124 (1951)

    Article  CAS  Google Scholar 

  36. G. Singh, H.P. Bhasker, R.P. Yadav, A. Kumar, B. Khan, A. Kumar, M.K. Singh, Phys. Scr. 94, 065802 (2019)

    Article  CAS  Google Scholar 

  37. S.U. Durgadsimi, S.S. Chougle, B.K. Chougle, C.H. Bhosleand, S.S. Bellad, Mater. Chem. Phys. 131, 199 (2011)

    Article  CAS  Google Scholar 

  38. B.N. Parida, R. Padhee, D. Suara, A. Mishra, R.N.P. Choudhary, J. Mat. Sci.: Mater Electron. 27, 9015–9012 (2016)

    CAS  Google Scholar 

  39. V.A. Isupov, Ferroelectrics 90, 113–118 (1989)

    Article  Google Scholar 

  40. V. Goian, S. Kamba, M. Savinov, D. Nuzhnyy, F. Borodavka, P. Vaněk, J. Appl. Phys. 112, 074112 (2012)

    Article  CAS  Google Scholar 

  41. E. Palaimiene, J. Macutkevic, D. Karpinsky, A. Kholkin, J. Banys, Appl. Phys. Lett. 106, 012906 (2015)

    Article  CAS  Google Scholar 

  42. V. Palkar, D.C. Kundaliya, S. Malik, S. Bhattacharya, Phys. Rev. B 69, 212102 (2004)

    Article  CAS  Google Scholar 

  43. R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21 (2007)

    Article  CAS  Google Scholar 

  44. F. Mizouri, I. Kallel, N. Abdelmoula, D. Mezzane, H. Khemakhem, J. Alloys Compd. 731, 458–464 (2018)

    Article  CAS  Google Scholar 

  45. W.M. Zhu, Z.G. Ye, Ceram. Int. 30, 1435–1442 (2004)

    Article  CAS  Google Scholar 

  46. G.A. Smolenskii, J. Phys. Soc. Jpn. 88, 26 (1970)

    Google Scholar 

  47. L.E. Cross, Ferroelectrics 76, 241–267 (1987)

    Article  CAS  Google Scholar 

  48. R.K. Dwivedi, D. Kumar, O. Parkash, J. Mater. Sci. 36, 3649–3655 (2001)

    Article  CAS  Google Scholar 

  49. A.K. Jonscher, Nature 267, 673 (1977)

    Article  CAS  Google Scholar 

  50. D.K. Pradhan, B. Behera, P.R. Das, J. Mater. Sci.: Mater. Electron. 23, 779 (2012)

    CAS  Google Scholar 

  51. J.C. Dyre, Th.B. Schroder, Phys. Stat. Sol. B 23, 5 (2002)

    Article  Google Scholar 

  52. U. Kumar, S. Upadhay, J. Mater. Sci.: Mater. Electron. 31, 5721 (2020)

    CAS  Google Scholar 

  53. A. Kumar, B. Khan, V. Yadav, A. Dixit, U. Kumar, M.K. Singh, J. Mater. Sci.: Mater. Electron. 19, 16838 (2020)

    Google Scholar 

  54. B.H. Venkataraman, K.B.R. Verma, Solid State Ion. 167, 197–202 (2004)

    Article  CAS  Google Scholar 

  55. P. BanarjiBehera, P. Nayak, R.N.P. Choudhary, Mater. Chem. Phys. 106, 193 (2007)

    Article  CAS  Google Scholar 

  56. C. Verdier, F.D. Morrison, D.C. Lupascu, J.F. Scott, J. Appl. Phys. 97, 024107 (2005)

    Article  CAS  Google Scholar 

  57. A.R. James, S. Priya, K. Uchino, K. Srinivas, J. Appl. Phys. 90, 3504–3508 (2001)

    Article  CAS  Google Scholar 

  58. D.K. Pradhan, P. Mishra, V.S. Puli, S. Sahoo, D.K. Pradhan, R.S. Katyar, J. Appl. Phys. 115, 243904 (2014)

    Article  CAS  Google Scholar 

  59. S. Sharma, V. Singh, R.K. Dwivedi, J. Alloys Compd. 682, 723–729 (2016)

    Article  CAS  Google Scholar 

  60. J.A. Dean, Lange’s Handbook of Chemistry, 15th edn. (McGraw-Hill, New York, 1999)

    Google Scholar 

  61. Y. Wang, C.W. Nan, Appl. Phys. Lett. 89, 052903 (2006)

    Article  CAS  Google Scholar 

  62. V. Kumar, S. Singh, J. Alloy. Compd. 732, 350–357 (2018)

    Article  CAS  Google Scholar 

  63. G.L. Yuan, S.W. Or, J. Appl. Phys. 100, 024109 (2006)

    Article  CAS  Google Scholar 

  64. M.K. Singh, W. Prellier, M.P. Singh, R.S. Katiyar, J.F. Scott, Phys Rev B 77, 144403 (2008)

    Article  CAS  Google Scholar 

  65. K. Prashanthi, B.A. Chalke, K.C. Barick, A. Das, I. Dhiman, V.R. Palkar, Solid State Commun. 149, 188 (2009)

    Article  CAS  Google Scholar 

  66. S. Ryu, J.-Y. Kim, Y.-H. Shin, B.-G. Park, J.Y. Son, H.M. Jang, Chem. Mater. 21, 5050 (2009)

    Article  CAS  Google Scholar 

  67. J. Pal, S. Kumar, L. Singh, M. Singh, J. Magn. Magn. Mater. 441, 339–347 (2017)

    Article  CAS  Google Scholar 

  68. V.R. Palkar, D.C. Kundaliya, S.K. Malik, Phys. Rev. B 69, 212102–212104 (2004)

    Article  CAS  Google Scholar 

  69. N. Adhlakha, K.L. Yadav, Smart Mater. Struct. 21, 115021 (2012)

    Article  CAS  Google Scholar 

  70. D.K. Pradhan, S. Kumari, V.S. Puli, P.T. Das, D.K. Pradhan, A. Kumar, J.F. Scott, R.S. Katiyar, Phys. Chem. 19, 210 (2017)

    CAS  Google Scholar 

  71. P. Manimuthu, C. Venkateswaran, Mater. Lett. 155, 8–10 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank DST, Government of India, New Delhi for financial support to the Centre of Materials Sciences under FIST Programme. B Khan thankfully acknowledges the University Grant Commission (UGC) of India for providing UGC research fellowship. The author Manoj K Singh is grateful to UGC India for financial support under the major research project (Grant No. 39-869/2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj K. Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, B., Kumar, A., Yadav, P. et al. Structural, dielectric, magnetic and magneto-dielectric properties of (1 − x)BiFeO3–(x)CaTiO3 composites. J Mater Sci: Mater Electron 32, 18012–18027 (2021). https://doi.org/10.1007/s10854-021-06344-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06344-0

Navigation