Skip to main content
Log in

V2O5–Sn mesh electrode system for inverted polymer solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The viability of V2O5–Sn bilayer mesh film on ITO as an electrode system for inverted polymer solar cell (IPSC) is investigated. The metallic ‘Sn’ is expected to act as a plasmonic layer, enhancing the electron collecting ability of V2O5. X-ray diffraction peaks are indexed to ITO, Sn and V2O5. The direct bandgap of V2O5–Sn bilayer mesh film is estimated to be 2.80 eV. In the deposited V2O5–Sn mesh pattern, isolated globule morphology of ‘Sn’ is observed. The V2O5–Sn electrode shows improved values of carrier concentration (1.789 × 1019 cm−3) conductivity (1.218 × 102 S cm−1) and mobility (42.51 cm2V−1 s−1) compared to that of standard ITO electrode. Power conversion efficiency of 0.63% for the IPSC fabricated using V2O5–Sn electrode is three times higher than the efficiency using Ta:V2O5 electrode. This patterned electrode system has scope for further improvement by varying the mesh size and fine tuning Sn layer thickness below its skin depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S.K. Hau, H.-L. Yip, A.K.-Y. Jen, Polym. Rev. 50, 474 (2010). https://doi.org/10.1080/15583724.2010.515764

    Article  CAS  Google Scholar 

  2. W.-F. Xu, M.-C. Tsai, P.-H. Fu, T.-Y. Huang, S.-J. Yang, W.-C. Tian, C.-W. Chu, D.-W. Huang, P.-K. Wei, RSC Adv. 5, 18990 (2015). https://doi.org/10.1039/C4RA15915B

    Article  CAS  Google Scholar 

  3. J.-L. Lan, S.-J. Cherng, Y.-H. Yang, Q. Zhang, S. Subramaniyan, F.S. Ohuchi, S.A. Jenekhe, G. Cao, J. Mater. Chem. A 2, 9361 (2014). https://doi.org/10.1039/C4TA01350F

    Article  CAS  Google Scholar 

  4. B.Y. Ahn, D.J. Lorang, J.A. Lewis, Nanoscale 3, 2700 (2011). https://doi.org/10.1039/C1NR10048C

    Article  CAS  Google Scholar 

  5. G.U. Kulkarni, S. Kiruthika, R. Gupta, K.D.M. Rao, Curr. Opin. Chem. Eng. 8, 60 (2015). https://doi.org/10.1016/j.coche.2015.03.001

    Article  Google Scholar 

  6. H.M. Stec, R.J. Williams, T.S. Jones, R.A. Hatton, Adv. Funct. Mater. 21, 1709 (2011). https://doi.org/10.1002/adfm.201002021

    Article  CAS  Google Scholar 

  7. R. Xue, J. Zhang, Y. Li, Y. Li, Small 14, 1801793 (2018). https://doi.org/10.1002/smll.201801793

    Article  CAS  Google Scholar 

  8. Z. Liang, Q. Zhang, O. Wiranwetchayan, J. Xi, Z. Yang, K. Park, C. Li, G. Cao, Adv. Funct. Mater. 22, 2194 (2012). https://doi.org/10.1002/adfm.201101915

    Article  CAS  Google Scholar 

  9. S. Park, S.J. Tark, J.S. Lee, H. Lim, D. Kim, Sol. Energy Mater. Sol. Cells 93, 1020 (2009). https://doi.org/10.1016/j.solmat.2008.11.033

    Article  CAS  Google Scholar 

  10. T.Z. Oo, R.D. Chandra, N. Yantara, R.R. Prabhakar, L.H. Wong, N. Mathews, S.G. Mhaisalkar, Org. Electron. 13, 870 (2012). https://doi.org/10.1016/j.orgel.2012.01.011

    Article  CAS  Google Scholar 

  11. J.-L. Lan, Z. Liang, Y.-H. Yang, F.S. Ohuchi, S.A. Jenekhe, G. Cao, Nano Energy 4, 140 (2014). https://doi.org/10.1016/j.nanoen.2013.12.010

    Article  CAS  Google Scholar 

  12. S.O. Oseni, G.T. Mola, Sol. Energy Mater. Sol. Cells 160, 241 (2017). https://doi.org/10.1016/j.solmat.2016.10.036

    Article  CAS  Google Scholar 

  13. E.A.A. Arbab, G.T. Mola, Appl. Phys. A 122, 405 (2016). https://doi.org/10.1007/s00339-016-9966-1

    Article  CAS  Google Scholar 

  14. M. Zafar, J.-Y. Yun, D.-H. Kim, Korean J. Chem. Eng. 34, 1504 (2017). https://doi.org/10.1007/s11814-017-0043-z

    Article  CAS  Google Scholar 

  15. L. Zhang, C. Jiang, C. Wu, H. Ju, G. Jiang, W. Liu, C. Zhu, T. Chen, ACS Appl. Mater. Interfaces 10, 27098 (2018). https://doi.org/10.1021/acsami.8b09843

    Article  CAS  Google Scholar 

  16. M. Kovendhan, D.P. Joseph, K.S. Babu, A. Sendilkumar, A.I.P. Conf, Proc. 1832, 080062 (2017). https://doi.org/10.1063/1.4980522

    Article  CAS  Google Scholar 

  17. H.B. Lee, W.-Y. Jin, M.M. Ovhal, N. Kumar, J.-W. Kang, J. Mater. Chem. C. 7, 1087 (2019). https://doi.org/10.1039/C8TC04423F

    Article  CAS  Google Scholar 

  18. A.L. Patterson, Phys. Rev. 56, 978 (1939). https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  19. C. Stelling, C.R. Singh, M. Karg, T.A.F. Konig, M. Thelakkat, M. Retsch, Sci. Rep. 7, 42530 (2017). https://doi.org/10.1038/srep42530

    Article  CAS  Google Scholar 

  20. D.F. Swinehart, The Beer-Lambert Law. J. Chem. Educ. 39, 333 (1962). https://doi.org/10.1021/ed039p333

    Article  CAS  Google Scholar 

  21. W. Chen, M.P. Nikiforov, S.B. Darling, Energy Environ. Sci. 5, 8045 (2012). https://doi.org/10.1039/C2EE22056C

    Article  CAS  Google Scholar 

  22. D.P. Joseph, U. Devarajan, J.M. Fernandes, R. Ramarajan, M. Kovendhan, N. Purushothamreddy, R. Muniramaiah, C. Venkateswaran, Surf. Interfaces 23, 100918 (2021). https://doi.org/10.1016/j.surfin.2020.100918

    Article  CAS  Google Scholar 

  23. R.V. Babu, J.M. Fernandes, M. Kovendhan, N. Purushothamreddy, R. Muniramaiah, R. Arockiakumar, N.S. Karthiselva, D.P. Joseph, Phys. B Condens. Matter 607, 412690 (2021). https://doi.org/10.1016/j.physb.2020.412690

    Article  CAS  Google Scholar 

  24. J.M. Fernandes, C. Swetha, E. Appalnaidu, K. Navamani, V.J. Rao, M.N. Satyanarayan, G. Umesh, Org. Electron. 47, 24 (2017). https://doi.org/10.1016/j.orgel.2017.04.027

    Article  CAS  Google Scholar 

  25. H.-W. Deng, Y.-J. Zhao, C.-J. Liang, W.-S. Jiang, Y. Ning, Prog. Electromagn. Res. 9, 1 (2009). https://doi.org/10.2528/PIERM09071411

    Article  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Kovendhan or D. Paul Joseph.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovendhan, M., Fernandes, J.M., Babu, K.S. et al. V2O5–Sn mesh electrode system for inverted polymer solar cells. J Mater Sci: Mater Electron 33, 8460–8466 (2022). https://doi.org/10.1007/s10854-021-06342-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06342-2

Navigation