Skip to main content
Log in

Chemical sintering of Ag nanoparticle conductive inks at room temperature for printable electronics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Silver (Ag) nanoparticles with a mean diameter of about 24.3 nm were synthesized by electroless deposition in an aqueous solution using PAA-Na and ascorbic acid as protective and reducing agents, respectively. The Ag nanoparticles were utilized as conductive ink and sintered at room temperature using different halide solutions (NaCl, NaBr, NaI, LiCl, KCl) at varying concentrations. A significant increase in particle size of about 174–990% was observed after sintering depending on the type of halide solution used. This also led to an increase in the electrical conductivity of the printed Ag pattern. Halide solutions with smaller ionic sizes generally promote the fusing of Ag nanoparticles, which results in larger Ag particles (NaCl > NaBr > NaI) and higher electrical conductivity. The use of an ionic stabilizer (PAA-Na salt) is more effective as a capping agent for Ag nanoparticles. Sintering is also more significant in samples stabilized by PAA-Na compared to those with PAA only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Available upon request to authors.

References

  1. P. Sarobol et al., Additive manufacturing of hybrid circuits. Annu. Rev. Mater. Res. 46, 41–62 (2016). https://doi.org/10.1146/annurev-matsci-070115-031632

    Article  CAS  Google Scholar 

  2. A.J. Kell et al., Versatile molecular silver ink platform for printed flexible electronics. ACS Appl. Mater. Interfaces 9(20), 17226–17237 (2017). https://doi.org/10.1021/acsami.7b02573

    Article  CAS  Google Scholar 

  3. S.H. Ko, H. Pan, C.P. Grigoropoulos, C.K. Luscombe, J.M.J. Fráchet, D. Poulikakos, Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles. Appl. Phys. Lett. 90(14), 141103 (2007). https://doi.org/10.1063/1.2719162

    Article  CAS  Google Scholar 

  4. D.A. Kislov, Effect of plasmonic silver nanoparticles on the photovoltaic properties of graetzel solar cells. Phys. Procedia 73, 114–120 (2015). https://doi.org/10.1016/j.phpro.2015.09.130

    Article  CAS  Google Scholar 

  5. A. Ciesielski, K.M. Czajkowski, D. Switlik, Silver nanoparticles in organic photovoltaics: finite size effects and optimal concentration. Sol. Energy 184, 477–488 (2019). https://doi.org/10.1016/j.solener.2019.04.015

    Article  CAS  Google Scholar 

  6. F.M. Wolf, J. Perelaer, S. Stumpf, D. Bollen, F. Kriebel, U.S. Schubert, Rapid low-pressure plasma sintering of inkjet-printed silver nanoparticles for RFID antennas. J. Mater. Res. 28(9), 1254–1261 (2013). https://doi.org/10.1557/jmr.2013.73

    Article  CAS  Google Scholar 

  7. J.F. Salmerón et al., Properties and printability of inkjet and screen-printed silver patterns for RFID antennas. J. Electron. Mater. 43(2), 604–617 (2014). https://doi.org/10.1007/s11664-013-2893-4

    Article  CAS  Google Scholar 

  8. T.R. Allington, V. Johnson, Membrane touch switches: thick-film materials systems and processing options. IEEE Trans. Compon. Hybrids Manuf. Technol. 3(4), 518–524 (1980). https://doi.org/10.1109/TCHMT.1980.1135649

    Article  Google Scholar 

  9. J. Kim, J.H. Jong, W.S. Kim, Repeatedly bendable paper touch pad via direct stamping of silver nanoink with pressure-induced low-temperature annealing. IEEE Trans. Nanotechnol. 12(6), 1139–1143 (2013). https://doi.org/10.1109/TNANO.2013.2281326

    Article  CAS  Google Scholar 

  10. A. Russo, B.Y. Ahn, J.J. Adams, E.B. Duoss, J.T. Bernhard, J.A. Lewis, Pen-on-paper flexible electronics. Adv. Mater. 23(30), 3426–3430 (2011). https://doi.org/10.1002/adma.201101328

    Article  CAS  Google Scholar 

  11. S. Magdassi, M. Grouchko, O. Berezin, A. Kamyshny, Triggering the sintering of silver nanoparticles at room temperature. ACS Nano 4(4), 1943–1948 (2010). https://doi.org/10.1021/nn901868t

    Article  CAS  Google Scholar 

  12. M. Layani, M. Grouchko, S. Shemesh, S. Magdassi, Conductive patterns on plastic substrates by sequential inkjet printing of silver nanoparticles and electrolyte sintering solutions. J. Mater. Chem. 22(29), 14349–14352 (2012). https://doi.org/10.1039/c2jm32789a

    Article  CAS  Google Scholar 

  13. E.M. Datu, M.D.L. Balela, In situ electrochemical study of copper nanoparticles stabilized with food grade gelatin. Key Eng. Mater. 705, 163–167 (2016)

    Article  Google Scholar 

  14. M.D.L. Balela, K.L.S. Amores, Formation of highly antimicrobial copper nanoparticles by electroless deposition in water. Sci. Diliman 27(2), 10–20 (2015)

    Google Scholar 

  15. M. Tan, L. de Jesus, K.L. Amores, E. Datu, D. Balela, Electroless deposition of copper nanostructures in aqueous solution. Adv. Mater. Res. 1043, 114–118 (2014)

    Article  Google Scholar 

  16. W. Cui, W. Lu, Y. Zhang, G. Lin, T. Wei, L. Jiang, Gold nanoparticle ink suitable for electric-conductive pattern fabrication using in ink-jet printing technology. Colloids Surfaces A Physicochem. Eng. Asp. 358(1–3), 35–41 (2010). https://doi.org/10.1016/j.colsurfa.2010.01.023

    Article  CAS  Google Scholar 

  17. K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112(5), 2739–2779 (2012). https://doi.org/10.1021/cr2001178

    Article  CAS  Google Scholar 

  18. D.C. Corsino, M.D.L. Balela, Room temperature sintering of printer silver nanoparticle conductive ink. IOP Conf. Ser. Mater. Sci. Eng. 264(1), 012020 (2017). https://doi.org/10.1088/1757-899X/264/1/012020

    Article  Google Scholar 

  19. N. De. Guzman, M.D. Balela, CuCl2-mediated synthesis of silver nanowires for flexible transparent conducting films. MATEC Web Conf. 27, 3–5 (2015). https://doi.org/10.1051/matecconf/20152703007

    Article  CAS  Google Scholar 

  20. J.S. Kang, J. Ryu, H.S. Kim, H.T. Hahn, Sintering of inkjet-printed silver nanoparticles at room temperature using intense pulsed light. J. Electron. Mater. 40(11), 2268–2277 (2011). https://doi.org/10.1007/s11664-011-1711-0

    Article  CAS  Google Scholar 

  21. N. De. Guzman, M.D.L. Balela, Growth of ultralong Ag nanowires by electroless deposition in hot ethylene glycol for flexible transparent conducting electrodes. J. Nanomater. (2017). https://doi.org/10.1155/2017/7896094

    Article  Google Scholar 

  22. T.H.J. Van Osch, J. Perelaer, A.W.M. De. Laat, U.S. Schubert, Inkjet printing of narrow conductive tracks on untreated polymeric substrates. Adv. Mater. 20(2), 343–345 (2008). https://doi.org/10.1002/adma.200701876

    Article  CAS  Google Scholar 

  23. S. Sivaramakrishnan, P.J. Chia, Y.C. Yeo, L.L. Chua, P.K.H. Ho, Controlled insulator-to-metal transformation in printable polymer composites with nanometal clusters. Nat. Mater. 6(2), 149–155 (2007). https://doi.org/10.1038/nmat1806

    Article  CAS  Google Scholar 

  24. D. Kim, S. Jeong, B.K. Park, J. Moon, Direct writing of silver conductive patterns: Improvement of film morphology and conductance by controlling solvent compositions. Appl. Phys. Lett. 89(26), 87–90 (2006). https://doi.org/10.1063/1.2424671

    Article  CAS  Google Scholar 

  25. J. Perelaer, B.J. De. Gans, U.S. Schubert, Ink-jet printing and microwave sintering of conductive silver tracks. Adv. Mater. 18(16), 2101–2104 (2006). https://doi.org/10.1002/adma.200502422

    Article  CAS  Google Scholar 

  26. K.A. Bogle, S.D. Dhole, V.N. Bhoraskar, Silver nanoparticles: synthesis and size control by electron irradiation. Nanotechnology 17(13), 3204–3208 (2006). https://doi.org/10.1088/0957-4484/17/13/021

    Article  CAS  Google Scholar 

  27. Y. Long, J. Wu, H. Wang, X. Zhang, N. Zhao, J. Xu, Rapid sintering of silver nanoparticles in an electrolyte solution at room temperature and its application to fabricate conductive silver films using polydopamine as adhesive layers. J. Mater. Chem. 21(13), 4875–4881 (2011). https://doi.org/10.1039/c0jm03838e

    Article  CAS  Google Scholar 

  28. M. Layani, S. Magdassi, Flexible transparent conductive coatings by combining self-assembly with sintering of silver nanoparticles performed at room temperature. J. Mater. Chem. 21(39), 15378–15382 (2011). https://doi.org/10.1039/c1jm13174e

    Article  CAS  Google Scholar 

  29. M. Grouchko, A. Kamyshny, C.F. Mihailescu, D.F. Anghel, S. Magdassi, Conductive inks with a ‘built-in’ mechanism that enables sintering at room temperature. ACS Nano 5(4), 3354–3359 (2011). https://doi.org/10.1021/nn2005848

    Article  CAS  Google Scholar 

  30. T. Öhlund, J. Örtegren, S. Forsberg, H.E. Nilsson, Paper surfaces for metal nanoparticle inkjet printing. Appl. Surf. Sci. 259, 731–739 (2012). https://doi.org/10.1016/j.apsusc.2012.07.112

    Article  CAS  Google Scholar 

  31. T. Öhlund, M. Hummelgård, H. Olin, Sintering inhibition of silver nanoparticle films via AgCl nanocrystal formation. Nanomaterials 7(8), 1–13 (2017). https://doi.org/10.3390/nano7080224

    Article  CAS  Google Scholar 

  32. J. Mähler, I. Persson, A study of the hydration of the alkali metal ions in aqueous solution. Inorg. Chem. 51(1), 425–438 (2012). https://doi.org/10.1021/ic2018693

    Article  CAS  Google Scholar 

  33. V.I. Volkov et al., Hydration and diffusion of h+, li+, na+, cs+ ions in cation-exchange membranes based on polyethylene-and sulfonated-grafted polystyrene studied by NMR technique and ionic conductivity measurements. Membranes (Basel) 10(10), 1–14 (2020). https://doi.org/10.3390/membranes10100272

    Article  CAS  Google Scholar 

  34. A.H. Lu, E.L. Salabas, F. Schüth, Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem.—Int. Ed. 46(8), 1222–1244 (2007). https://doi.org/10.1002/anie.200602866

    Article  CAS  Google Scholar 

  35. N. Ali, J.A. Teixeira, A. Addali, A review on nanofluids: fabrication, stability, and thermophysical properties. J. Nanomater. (2018). https://doi.org/10.1155/2018/6978130

    Article  Google Scholar 

  36. T.W. Hansen, A.T. Delariva, S.R. Challa, A.K. Datye, Sintering of catalytic nanoparticles: particle migration or ostwald ripening? Acc. Chem. Res. 46(8), 1720–1730 (2013). https://doi.org/10.1021/ar3002427

    Article  CAS  Google Scholar 

  37. R. Anderson, R. Buscall, R. Eldridge, P. Mulvaney, P.J. Scales, Ostwald ripening of comb polymer stabilised Ag salt nanoparticles. Colloids Surfaces A Physicochem. Eng. Asp. 459, 58–64 (2014). https://doi.org/10.1016/j.colsurfa.2014.06.033

    Article  CAS  Google Scholar 

  38. A. Fahmy, W.H. Eisa, M. Yosef, A. Hassan, Ultra-thin films of poly(acrylic acid)/silver nanocomposite coatings for antimicrobial applications. J. Spectrosc. (2016). https://doi.org/10.1155/2016/7489536

    Article  Google Scholar 

  39. R. Das, S.S. Nath, D. Chakdar, G. Gope, R. Bhattacharjee, Synthesis of silver nanoparticles and their optical properties. J. Exp. Nanosci. 5(4), 357–362 (2010). https://doi.org/10.1080/17458080903583915

    Article  CAS  Google Scholar 

  40. D. Rawlins, J. Kayes, Steric stabilization of suspensions. Drug Dev. Ind. Pharm. 6(5), 427–440 (1980). https://doi.org/10.3109/03639048009068715

    Article  CAS  Google Scholar 

  41. H. Markovitz, G.E. Kimball, The effect of salts on the viscosity of solutions of polyacrylic acid. J. Colloid Sci. 5(2), 115–139 (1950). https://doi.org/10.1016/0095-8522(50)90014-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Department of Science and Technology through the Philippine Council for Industry, Energy, and Emerging Technology Research and Development (DOST-PCIEERD) under the research project entitled “Up-Scaled Synthesis of Metal Nanowires and their Application in Transparent Metal Nanowire Touch Panel” and the Engineering Research and Development for Technology (DOST-ERDT) research grant for the financial support. The authors would also like to thank the Active Nanomaterial Synthesis and Devices Laboratory (ANSyD) through Dr. Candy C. Mercado for the use of the UV-Vis spectrometer. Dr. Balela would also like to acknowledge the Uratex Professorial Chair in Engineering through the University of the Philippines Engineering Research and Development Foundation, Inc. (UPERDFI).

Funding

Funding was secured from the following agencies: Department of Science and Technology- Philippine Council for Industry, Energy, and Emerging Technology Research and Development (DOST-PCIEERD). DOST- Engineering Research and Development for Technology (ERDT).

Author information

Authors and Affiliations

Authors

Contributions

BFYR: Conceptualization, Methodology, Investigation, Writing-original draft. MDLB: Conceptualization, Resources, Supervision, Writing-review and editing.

Corresponding author

Correspondence to Mary Donnabelle L. Balela.

Ethics declarations

Conflict of interest

The authors declare that they do not have any conflict of interest/competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaga, B.F.Y., Balela, M.D.L. Chemical sintering of Ag nanoparticle conductive inks at room temperature for printable electronics. J Mater Sci: Mater Electron 32, 17764–17779 (2021). https://doi.org/10.1007/s10854-021-06313-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06313-7

Navigation