Skip to main content

Advertisement

Log in

PVP-assisted grass-like NiSe@ZnSe composite for environmental energy applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Well-defined NiSe@ZnSe composite electrode was synthesized along with polyvinyl pyrrolidone (PVP) and sodium lauryl sulfate (SLS) surfactant whose redox behavior is an interesting approach toward boosting performance of the supercapacitor. High crystallinity suggested that prepared composite NiSe@ZnSe was well appropriate for the application concerning the supercapacitor electrode material. The Raman spectroscopy identified the functional group, vibrations, stretching of bonds, and presence of defects in the samples. The surface to volume ratio of the loosely packed grass-like structures resulted in availability of more surface area for the electrolyte which leads to the enhanced reaction rates. As-prepared active synthesized product revealed 442 Fg−1 specific capacitance at 1 Ag−1 with 99.3% high-rate capability at 10 Ag−1 after 2000 cycles. Besides, notably, capacity retention of the sandwiched asymmetric NiSe@ZnSe//AC device was maintained to be 99.48% after constant charge−discharge 2000 cycles and displayed outstanding electrochemical stability. Herein, NiSe@ZnSe composite electrode was prepared because Zn could improve the electrical conductivity and capacitive performance. Ni can improve active site density and conductivity. Meanwhile, selenium enhanced charge transfer properties. Therefore, binary composite NiSe@ZnSe acts as a satisfactory electrode material for energy saving application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Maksou, R. Fahim, A. Shalan, M. Elkodous, S. Olojede, A. Farrell, A. Muhtaseb, A. Awed, A. Ashour, D. Rooney, Environ. Chem. Lett. 19, 375–439 (2021). https://doi.org/10.1007/s10311-020-01075-w

    Article  CAS  Google Scholar 

  2. D. Wang, Z. Liang, S. Gao, C. Qu, R. Zou, Coord. Chem. Rev. 404, 213093 (2020). https://doi.org/10.1016/j.ccr.2019.213093

    Article  CAS  Google Scholar 

  3. Y. Kumar, K. Kumar, H. Kim, Electrochim. Acta. 330, 135261 (2020). https://doi.org/10.1016/j.electacta.2019.135261

    Article  CAS  Google Scholar 

  4. A. Jain, M. Ghosh, M. Krajewski, S. Kurungot, M. Michalska, J. Energy Storage 34, 102178 (2021). https://doi.org/10.1016/j.est.2020.102178

    Article  Google Scholar 

  5. W. Zhang, Y. Wang, X. Guo, Y. Liu, Y. Zheng, M. Zhang, R. Li, Z. Peng, Z. Wang, T. Zhang, J. Alloys Compd. 855, 157394 (2021). https://doi.org/10.1016/j.jallcom.2020.157394

    Article  CAS  Google Scholar 

  6. S. Sitaaraman, R. Santhosh, P. Kollu, S. Jeong, R. Sellappan, V. Raghavan, G. Jacob, A. Grace, Diam. Relat. Mater. 108, 107983 (2020). https://doi.org/10.1016/j.diamond.2020.107983

    Article  CAS  Google Scholar 

  7. Q. He, T. Yang, X. Wang, P. Zhou, S. Chen, F. Xiao, P. He, L. Jia, T. Zhang, D. Yang, J. Mater. Sci. 32, 3649–3660 (2021). https://doi.org/10.1007/s10854-020-05111-x

    Article  CAS  Google Scholar 

  8. A. Zardkhoshoui, S. Davarani, Nanoscale 12, 12476–12489 (2020). https://doi.org/10.1039/D0NR02642E

    Article  Google Scholar 

  9. C. Wang, Z. Song, H. Wan, X. Chen, Q. Tan, Y. Gan, P. Liangb, J. Zhang, H. Wang, Y. Wang, X. Peng, P. Aken, H. Wang, Chem. Eng. J. 400, 125955 (2020). https://doi.org/10.1016/j.cej.2020.125955

    Article  CAS  Google Scholar 

  10. S. Shinde, D. Kim, V. Parale, H. Park, H. Yadav, Metals 10, 1698 (2020). https://doi.org/10.3390/met10121698

    Article  CAS  Google Scholar 

  11. R. Hussain, I. Hussain, J. Alloys Compd. 842, 155800 (2020). https://doi.org/10.1016/j.jallcom.2020.155800

    Article  CAS  Google Scholar 

  12. T. Lu, S. Dong, C. Zhang, L. Zhang, G. Cui, Coord. Chem. Rev. 332, 75–99 (2017). https://doi.org/10.1016/j.ccr.2016.11.005

    Article  CAS  Google Scholar 

  13. Q. Yang, X. Chen, H. Zhan, S. Wu, Q. Hu, R. Zhou, Y. Xue, Synth. Met. 257, 116167 (2019). https://doi.org/10.1016/j.synthmet.2019.116167

    Article  CAS  Google Scholar 

  14. B. Kirubasankar, V. Murugadoss, J. Lin, T. Ding, M. Dong, H. Liu, J. Zhang, T. Li, N. Wang, Z. Guo, S. Angaiah, Nanoscale 10, 20414 (2018). https://doi.org/10.1039/c8nr06345a

    Article  CAS  Google Scholar 

  15. K. Prasad, G.R. Reddy, M. Rajesh, P.R. Babu, G. Shanmugam, J. Sushma, M.S.P. Reddy, B.D.P. Raju, K. Mallikarjuna, Curr. Comput.-Aided Drug Des. 10, 566 (2020). https://doi.org/10.3390/cryst10070566

    Article  CAS  Google Scholar 

  16. N. Salleh, S. Kheawhom, A. Mohamad, Arab. J. Chem. 13, 6838–6846 (2020). https://doi.org/10.1016/j.arabjc.2020.06.036

    Article  CAS  Google Scholar 

  17. K. Raghavendra, R. Vinodh, C. Gopi, M. Kumara, H. Kim, Mater. Lett. 268, 127594 (2020). https://doi.org/10.1016/j.matlet.2020.127594

    Article  CAS  Google Scholar 

  18. V. Mariappan, K. Krishnamoorthy, P. Pazhamalai, S. Sahoo, S. Kim, Electrochim. Acta 275, 110–118 (2018). https://doi.org/10.1016/j.electacta.2018.04.126

    Article  CAS  Google Scholar 

  19. C. Ma, J. Min, J. Gong, X. Liu, X. Mu, X. Chen, T. Tang, Chemosphere 253, 126755 (2020). https://doi.org/10.1016/j.chemosphere.2020.126755

    Article  CAS  Google Scholar 

  20. F. Wu, T. Zhao, Y. Yao, T. Jiang, B. Wang, M. Wang, Chemosphere 238, 124638 (2020). https://doi.org/10.1016/j.chemosphere.2019.124638

    Article  CAS  Google Scholar 

  21. S. Kim, J. Lee, J.S. Kang, K. Jo, S. Kim, Y.E. Sung, J. Yoon, Chemosphere 125, 50–56 (2015). https://doi.org/10.1016/j.chemosphere.2015.01.024

    Article  CAS  Google Scholar 

  22. R.V. Khose, P.H. Wadekar, D.A. Pethsangave, G. Chakraborty, A.K. Ray, S. Some, Chemosphere 246, 125785 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by UGC-SAP, DST-FIST, DST-PURSE, and MHRD-RUSA grants. The authors are thankful to the Deanship of Scientific Research at King Khalid University for funding this work through Research Group Project under Grant No. R.G.P.2/22/42.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Yuvakkumar, G. Ravi or Dhayalan Velauthapillai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidhya, M.S., Yuvakkumar, R., Ravi, G. et al. PVP-assisted grass-like NiSe@ZnSe composite for environmental energy applications. J Mater Sci: Mater Electron 33, 8409–8416 (2022). https://doi.org/10.1007/s10854-021-06304-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06304-8

Navigation