Skip to main content

Advertisement

Log in

High energy storage density and large strain with ultra-low hysteresis in Mn-doped 0.65Bi0.5Na0.5TiO3-0.35SrTiO3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the energy storage performance and strain behavior of MnO-doped 0.65Bi0.5Na0.5TiO3-0.35SrTiO3 (NBT-ST-xMn) lead-free ceramics were investigated. MnO was induced as a ‘hard’ dopant to promote the formation of defect dipoles and improve relative density, enhancing the difference between the maximum and remnant polarization (Pmax-Pr) as well as the breakdown electric field (BDS) values. A high recoverable energy density of 1.14 J cm3 with a high energy efficiency of 83 % were achieved simultaneously under low electric field of 89 kV cm-1 at x = 0.5 mol%. Meanwhile, a relatively high strain of 0.22 % with ultra-low hysteresis of 14 % was attained under a moderate electric field of 60 kV/cm at x = 1.0 mol%. The results illustrate that the proper selection of base composition and effective chemical modifier make the NBT-ST an outstanding candidate for actuators and energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Zhao, Q. Liu, J. Gao, S. Zhang, J.F. Li, Lead-free antiferroelectric silver niobate tantalate with high energy storage performance. Adv. Mater. 29, 1701824 (2017)

    Article  CAS  Google Scholar 

  2. T.M. Gür, Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy Environ Sci. 11, 2696–2767 (2018)

    Article  Google Scholar 

  3. K. Zou, Y. Dan, H. Xu, Q. Zhang, Y. Lu, H. Huang, Y. He, Recent advances in lead free dielectric materials for energy storage. Mater. Res. Bull 113, 190–201 (2019)

    Article  CAS  Google Scholar 

  4. Y.C. Wu, Y.Z. Fan, N.T. Liu, P. Peng, M.X. Zhou, S.G. Yan, F. Cao, X. Dong, G.S. Wang, Enhanced energy storage properties in sodium bismuth titanate-based ceramics for dielectric capacitor applications. J. Mater. Chem. C. 7, 6222–6230 (2019)

    Article  CAS  Google Scholar 

  5. W.G. Ma, Y.W. Zhu, M.A. Marwat, P.Y. Fan, B. Xie, D. Salamon, Z.G. Ye, H.B. Zhang, Enhanced energy-storage performance with excellent stability under low electric fields in BNT-ST relaxor ferroelectric ceramics. J. Mater. Chem. C. 7, 281–288 (2019)

    Article  CAS  Google Scholar 

  6. F. Yan, K.W. Huang, T. Jiang, X.F. Zhou, Y.J. Shi, G.L. Ge, B. Shen, J.W. Zhai, Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering. Energy Storage Mater. 30, 392–400 (2020)

    Article  Google Scholar 

  7. L. Yang, X. Kong, Z. Cheng, S. Zhang, Ultra-high energy storage performance with mitigated polarization saturation in lead-free relaxors. J. Mater. Chem. A 7, 8573–8580 (2019)

    Article  CAS  Google Scholar 

  8. H. Wang, Y. Liu, T. Yang, S. Zhang, Ultrahigh energy-storage density in antiferroelectric ceramics with field-induced multiphase transitions. Adv. Funct. Mater. 29, 1807321 (2019)

    Article  CAS  Google Scholar 

  9. X. Liu, Y. Li, X. Hao, Ultra-high energy-storage density and fast discharge speed of (Pb0.98–xLa0.02Srx)(Zr0.9Sn0.1)0.995O3 antiferroelectric ceramics prepared via the tape-casting method. J. Mater. Chem. A 7, 11858–11866 (2019)

    Article  CAS  Google Scholar 

  10. W.B. Li, D. Zhou, L.X. Pang, Enhanced energy storage density by inducing defect dipoles in lead free relaxor ferroelectric BaTiO3-based ceramics. Appl. Phys. Lett. 110, 132902 (2017)

    Article  CAS  Google Scholar 

  11. R. Mahbub, T. Fakhrul, M.F. Islam, Enhanced dielectric properties of tantalum oxide doped barium titanate based ceramic materials. Procedia Eng. 56, 760–765 (2013)

    Article  CAS  Google Scholar 

  12. L.J. Wang, J.B. Wang, B. Li, X.L. Zhong, F. Wang, H.J. Song, Y.K. Zeng, D. Huang, Y.C. Zhou, Enhanced room temperature electrocaloric effect in barium titanate thin films with diffuse phase transition. RSC Adv. 4, 21826–21829 (2014)

    Article  CAS  Google Scholar 

  13. R. Mahbub, T. Fakhrul, M.F. Islam, M. Hasan, A. Hussain, M.A. Matin, M.A. Hakim, Structural, Dielectric, and Magnetic Properties of Ba-Doped Multiferroic Bismuth Ferrite. Acta Metall. Sin. (Engl. Lett.) 28, 958–964 (2015)

    Article  CAS  Google Scholar 

  14. P. Jaiban, N. Pisitpipathsin, S. Buntham, A. Watcharapasorn, Dielectric and ferroelectric properties of Ta-doped Ba0.7Ca0.3TiO3 ceramics. Ceram. Int. 43, S286–S291 (2017)

    Article  CAS  Google Scholar 

  15. Z.G. Liu, Z.H. Tang, S.C. Hu, D.J. Yao, F. Sun, D.Y. Chen, X.B. Guo, Q.X. Liu, Y.P. Jiang, X.G. Tang, Excellent energy storage density and efficiency in lead-free Sm-doped BaTiO3-Bi(Mg0.5Ti0.5)O3 ceramics. J. Mater. Chem. C 8, 13405–13414 (2020)

    Article  CAS  Google Scholar 

  16. Z.T. Chen, X.Y. Bu, B.X. Ruan, J. Du, P. Zheng, L.L. Li, F. Wen, W.F. Bai, W. Wu, L. Zheng, Y. Zhang, Simultaneously achieving high energy storage density and efciency under low electric feld in BiFeO3-based lead-free relaxor ferroelectric ceramics. J. Eur. Ceram. Soc. 40, 5450–5457 (2020)

    Article  CAS  Google Scholar 

  17. A. Tian, R.Z. Zuo, H. Qi, M. Shi, Large energy-storage density in transition-metal oxide modified NaNbO3-Bi(Mg0.5Ti0.5)O3 lead-free ceramics through regulating the antiferroelectric phase structure. J. Mater. Chem. A 8, 8352–8359 (2020)

    Article  CAS  Google Scholar 

  18. M. Zhang, H.B. Yang, D. Li, L. Ma, Y. Lin, Giant energy storage efficiency and high recoverable energy storage density achieved in K0.5Na0.5NbO3-Bi(Zn0.5Zr0.5)O3 ceramics. J. Mater. Chem. C 8, 8777–8785 (2020)

    Article  CAS  Google Scholar 

  19. Q. Xu, J. Xie, Z.C. He, L. Zhang, M.H. Cao, X.D. Huang, M.T. Lanagan, H. Hao, Z.H. Yao, H.X. Liu, Energy-storage properties of Bi0.5Na0.5TiO3-BaTiO3-KNbO3 ceramics fabricated by wet-chemical method. J. Eur. Ceram. Soc. 37, 99–106 (2017)

    Article  CAS  Google Scholar 

  20. X.S. Qiao, D. Wu, F.D. Zhang, B. Chen, X.D. Ren, P.F. Liang, H.L. Du, X.L. Chao, Z.P. Yang, Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramic with large energy density and high efficiency under a moderate electric field. J. Mater. Chem. C 7, 10514–10520 (2019)

    Article  CAS  Google Scholar 

  21. M. Li, P.Y. Fan, W.G. Ma, K. Liu, J.D. Zang, C. Samart, T. Zhang, H. Tan, D. Salamon, H.B. Zhang, Constructing layered structures to enhance the breakdown strength and energy density of Na0.5Bi0.5TiO3-based lead-free dielectric ceramics. J. Mater. Chem. C. 7, 15292–15300 (2019)

    Article  CAS  Google Scholar 

  22. A.K. Yadav, H.Q. Fan, B.B. Yan, C. Wang, J.W. Ma, M.C. Zhang, Z.N. Du, W.J. Wang, W.Q. Dong, S. Wang, High strain and high energy density of lead-free (Bi0.50Na0.40K0.10)0.94Ba0.06Ti(1–x)(Al0.50Ta0.50)xO3 perovskite ceramics. J. Mater. Sci. Ceram. 55, 11137–11150 (2020)

    Article  CAS  Google Scholar 

  23. W.P. Cao, J. Sheng, Y.L. Qiao, L. Jing, Z. Liu, J. Wang, W.L. Li, Optimized strain with small hysteresis and high energy-storage density in Mn-doped NBT-ST system. J. Eur. Ceram. Soc. 39, 4046–4052 (2019)

    Article  CAS  Google Scholar 

  24. L. Jin, Z.B. He, D. Damjanovic, Nanodomains in Fe+ 3-doped lead zirconate titanate ceramics at the morphotropic phase boundary do not correlate with high properties. Appl. Phys. Lett. 95, 012905 (2009)

    Article  CAS  Google Scholar 

  25. X.B. Ren, Large electric-feld-induced strain in ferroelectric crystals by point-defectmediated reversible domain switching. Nat. Mater. 3, 91–94 (2004)

    Article  CAS  Google Scholar 

  26. Z.Y. Feng, X. Ren, Aging effect and large recoverable electrostrain in Mn-doped KNbO3 -based ferroelectrics. Appl. Phys. Lett. 91, 032904 (2007)

    Article  CAS  Google Scholar 

  27. W.P. Cao, W.L. Li, X.F. Dai, T.D. Zhang, J. Sheng, Y.F. Hou, W.D. Fei, Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics. J. Eur. Ceram. Soc. 36, 593–600 (2016)

    Article  CAS  Google Scholar 

  28. Y.C. Wu, Y.Z. Fan, N.T. Liu, P. Peng, M.X. Zhou, S.G. Yan, F. Cao, X.L. Dong, G.S. Wang, Enhanced energy storage properties in sodium bismuth titanate-based ceramics for dielectric capacitor applications. J. Mater. Chem. C 7, 6222–6230 (2019)

    Article  CAS  Google Scholar 

  29. Y. Hiruma, Y. Imai, Y. Watanabe, H. Nagata, T. Takenaka, Large electrostrain near the phase transition temperature of Bi0.5Na0.5TiO3-SrTiO3 ferroelectric ceramics. Appl. Phys. Lett. 92, 262904 (2008)

    Article  CAS  Google Scholar 

  30. W. Krauss, D. Schütz., F.A. Mautner, A. Feteira, K. Reichmann, Piezoelectric properties and phase transition temperatures of the solid solution of (1 – x)(Bi0.5Na0.5)TiO3xSrTiO3. J. Eur. Ceram. Soc. 30, 1827–1832 (2010)

    Article  CAS  Google Scholar 

  31. R.D. Levi, Y. Tsur, The effect of oxygen vacancies in the early stages of BaTiO3 nanopowder sintering. Adv. Mater. 17, 1606–1608 (2005)

    Article  CAS  Google Scholar 

  32. M.K. Zhu, L.Y. Liu, Y.D. Hou, H. Wang, H. Yan, Microstructure and Electrical Properties of MnO-Doped (Na0.5Bi0.5)0.92Ba0.08TiO3 Lead-Free Piezoceramics. J. Am. Ceram. Soc. 90, 120–124 (2007)

    Article  CAS  Google Scholar 

  33. J.H. Kim, D.H. Kim, T.H. Lee, T.G. Lee, J.H. Lee, B.Y. Kim, S. Nahm, C.Y. Kang, J.H. Ryu, Large Electrostrain in K(Nb1–xMnx)O3 Lead-Free Piezoelectric Ceramics. J. Am. Ceram. Soc. 99, 4031–4038 (2016)

    Article  CAS  Google Scholar 

  34. Y.X. Kong, W.J. Wang, L.Y. Chen, Z.W. Huang, J.G. Hao, Enhancement of the electrical–feld–induced strain in sodium bismuth titanate–based lead–free ceramics by co–doping with Mn and Nb. J. Mater. Sci.: Mater. Electron. 30, 9705–9714 (2019)

    CAS  Google Scholar 

  35. A.R. Malathi, C.S. Devi, G.S. Kumar, M. Vithal, G. Prasad, Dielectric relaxation in NBT-ST ceramic composite materials. Ionics 19, 1751–1760 (2013)

    Article  CAS  Google Scholar 

  36. A. Jain, Y.G. Wang, H. Guo, Microstructure induced ultra-high energy storage density coupled with rapid discharge properties in lead-free Ba0.9Ca0.1Ti0.9Zr0.1O3-SrNb2O6 ceramics. Ceram. Int. 47, 487–499 (2021)

    Article  CAS  Google Scholar 

  37. F. Li, J. Zhai, B. Shen, X. Liu, H. Zeng, Simultaneously high-energy storage density and responsivity in quasi-hysteresis-free Mn-doped Bi0.5Na0.5TiO3-BaTiO3-(Sr0.7Bi0.20.1)TiO3 ergodic relaxor ceramics. Mater. Res. Lett. 6, 345–352 (2018)

    Article  CAS  Google Scholar 

  38. B. Qu, H. Du, Z. Yang, Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability. J. Mater. Chem. C 4, 1795–1803 (2016)

    Article  CAS  Google Scholar 

  39. X.M. Liu, X.L. Tan, Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics. Adv. Mater. 28, 574–578 (2016)

    Article  CAS  Google Scholar 

  40. H.L. Li, Q. Liu, J.J. Zhou, K. Wang, J.F. Li, H. Liu, J.Z. Fang, Grain size dependent electrostrain in Bi1/2Na1/2TiO3-SrTiO3 incipient piezoceramics. J. Eur. Ceram. Soc. 36, 2849–2853 (2016)

    Article  CAS  Google Scholar 

  41. A. Ullah, R.A. Malik, A. Ullah, D.S. Lee, S.J. Jeong, J.S. Lee, I.W. Kim, C.W. Ahn, Electric-field-induced phase transition and large strain in lead-free Nb-doped BNKT-BST ceramics. J. Eur. Ceram. Soc. 34, 29–35 (2014)

    Article  CAS  Google Scholar 

  42. W.F. Bai, D.Q. Chen, Y.W. Huang, P. Zheng, J.S. Zhong, M.Y. Ding, Y.J. Yuan, B. Shen, J.W. Zhai, Z.G. Ji, Temperature-insensitive large strain response with a low hysteresis behavior in NBT-based ceramics. Ceram. Int. 42, 7669–7680 (2016)

    Article  CAS  Google Scholar 

  43. T.Y. Li, X.J. Lou, X.Q. Ke, S.D. Cheng, S.B. Mi, X.J. Wang, J. Shi, X. Liu, G.Z. Dong, H.Q. Fan, Y.Z. Wang, X.L. Tan, Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5) TiO3-based lead-free piezoceramics. Acta. Mater. 128, 337–344 (2017)

    Article  CAS  Google Scholar 

  44. H.B. Lee, D.J. Heo, R.A. Malik, C.H. Yoon, H.S. Han, J.S. Leen, Lead-free Bi1/2(Na0.82K0.18)1/2TiO3 ceramics exhibiting large strain with small hysteresis. Ceram. Int. 39, S705–S708 (2013)

    Article  CAS  Google Scholar 

  45. S.T. Zhang, A.B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rödel, D. Damjanovic, High-strain lead-free antiferroelectric electrostrictors. Adv. Mater. 21, 4716–4721 (2009)

    Article  CAS  Google Scholar 

  46. H. Qian, Z.L. Yu, M.M. Mao, Y.F. Liu, Y.N. Lyu, Nanoscale origins of small hysteresis and remnant strain in Bi0.5Na0.5TiO3-based lead-free ceramics. J. Eur. Ceram. Soc. 37, 3483–3491 (2017)

    Article  CAS  Google Scholar 

  47. P.Y. Fan, Y.Y. Zhang, Q. Zhang, B. Xie, Y.W. Zhu, M.A. Mawat, W.G. Ma, K. Liu, J.Z. Xiao, H.B. Zhang, Large strain with low hysteresis in Bi4Ti3O12 modified Bi1/2(Na0.82K0.18)1/2TiO3 lead-free piezoceramics. J. Eur. Ceram. Soc. 38, 4404–4413 (2018)

    Article  CAS  Google Scholar 

  48. W.P. Cao, W.L. Li, Y. Feng, T. Bai, Y.L. Qiao, Y.F. Hou, T.D. Zhang, Y. Yu, W.D. Fei, Defect dipole induced large recoverable strain and high energy-storage density in lead free Na0.5Bi0.5TiO3-based systems. Appl. Phys. Lett. 108, 202902 (2016)

    Article  CAS  Google Scholar 

  49. J. Chen, Y.P. Wang, L. Wu, Q.R. Hu, Y. Yang, Effect of nanocrystalline structures on the large strain of LiNbO3 doped (Bi0.5Na0.5)TiO3-BaTiO3 materials. J. Alloys Compd. 775, 865–871 (2019)

    Article  CAS  Google Scholar 

  50. D. Maurya, Y. Zhou, Y. Wang, Y. Yan, J. Li, D. Viehland, S. Priya, Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0.5Bi0.5TiO3-BaTiO3-Na0.5Bi0.5TiO3 piezoelectric materials. Sci. Rep. 5, 85–95 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51802061, 51677033 and 51702069), University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province (No. UNPYSCT-2020215), Youth Innovative Talent Support Program of Harbin University of Commerce (No. 2020CX05), and Doctoral Start-up Scientific Research Foundation of Harbin University of Commerce (No. 2019DS078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenping Cao.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, W., Li, W., Lin, Q. et al. High energy storage density and large strain with ultra-low hysteresis in Mn-doped 0.65Bi0.5Na0.5TiO3-0.35SrTiO3 ceramics. J Mater Sci: Mater Electron 32, 17645–17654 (2021). https://doi.org/10.1007/s10854-021-06299-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06299-2

Navigation