Skip to main content
Log in

High-performance multilayer WSe2 p-type field effect transistors with Pd contacts for circuit applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

WSe2 is thought to be one of the best emerging p-type transition metal dichalcogenide (TMD) materials for potential low-power complementary metal oxide semiconductor (CMOS) circuit applications. However, the contact barrier and the interface quality hinder the performance of p-type field effect transistors (FETs) with WSe2 films. In this work, metals with different work functions—Pd, Pt, and Ag—were systematically investigated as contacts for WSe2 to decrease the contact resistances at source/drain electrodes and potentially improve transistor performance. Optimized p-type multilayer WSe2 FETs with Pd contacts were successfully fabricated, and excellent electrical characteristics were obtained: a hole mobility of 36 cm2V−1 s−1; a high on/off ratio, over 106; and a record low sub-threshold swing, SS = 95 mV/dec, which may be attributed to the small Schottky barrier height of 295 meV between Pd and WSe2, and strong Fermi-level pinning near the top of the valence band at the interface. Finally, a full-functional CMOS inverter was also demonstrated, consisting of a p-type WSe2 FET together with a normal n-type MoS2 FET. This confirmed the potential of TMD FETs in future low-power CMOS digital circuit applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov et al., Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    CAS  Google Scholar 

  2. Y. Zhang, J. Liu, Y. Pan et al., The evolution of MoS2 properties under oxygen plasma treatment and its application in MoS2 based devices. J. Mater. Sci. Mater. Electron. 30(19), 18185–18190 (2019)

    Article  CAS  Google Scholar 

  3. Q.H. Wang, K. Kalantar-Zadeh, A. Kis et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699–712 (2012)

    Article  CAS  Google Scholar 

  4. M. Chhowalla, H.S. Shin, G. Eda et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013)

    Article  Google Scholar 

  5. H. Sahin, S. Tongay, S. Horzum et al., Anomalous Raman spectra and thickness-dependent electronic properties of WSe2. Phys. Rev. B 95(12), 165409 (2013)

    Article  Google Scholar 

  6. B. Radisavljevic, A. Radenovic, J. Brivio et al., Single-layer MoS2 transistors. Nat. Nanotechnol. 6(3), 147–150 (2011)

    Article  CAS  Google Scholar 

  7. H. Liu, P.D. Liu, MoS2 dual-gate MOSFET with atomic-layer-deposited Al2O3 as top-gate dielectric. IEEE Electron Device Lett. 33(4), 546–548 (2012)

    Article  CAS  Google Scholar 

  8. C. Zhou, Y. Zhao, S. Raju, Carrier type control of WSe2 field-effect transistors by thickness modulation and MoO3 layer doping. Adv. Funct. Mater. 26(23), 4223–4230 (2016)

    Article  CAS  Google Scholar 

  9. Y. Pan, H. Yin, K. Huang et al., Novel 10-nm gate length MoS2 transistor fabricated on Si Fin substrate. IEEE J. Electron Devices Soc. 7(1), 483–488 (2019)

    Article  CAS  Google Scholar 

  10. H.-J. Chuang, X. Tan, N.J. Ghimire et al., High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. Nano Lett. 14(6), 3594–3601 (2014)

    Article  CAS  Google Scholar 

  11. J. Kang, W. Liu, D. Sarkar, Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X 4(3), 031005 (2014)

    CAS  Google Scholar 

  12. V. Podzorov, M.E. Gershenson, Ch. Kloc et al., High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 84(17), 3301–3303 (2004)

    Article  CAS  Google Scholar 

  13. H. Fang, S. Chuang, T.C. Chang et al., High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12(7), 3788–3792 (2012)

    Article  CAS  Google Scholar 

  14. H. Shen, S. Bu, D. Huang, Transient characteristics of back-gated multilayer MoS2 and WSe2 channel n-type metal oxide semiconductor field effect transistors: a comparative study. J. Appl. Phys. 126(19), 194501 (2019)

    Article  Google Scholar 

  15. A.S. Bandyopadhyay, G.A. Saenz, A.B. Kaul, Role of metal contacts and effect of annealing in high performance 2D WSe2 field-effect transistors. Surf. Coat. Technol. 381, 125084 (2020)

    Article  CAS  Google Scholar 

  16. W. Liu, J. Kang, D. Sarkar et al., Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett. 13(5), 1983–1990 (2013)

    Article  CAS  Google Scholar 

  17. W.-M. Kang, S. Lee, I.-T. Cho et al., Multi-layer WSe2 field effect transistor with improved carrier-injection contact by using oxygen plasma treatment. Solid State Electron. 140, 2–7 (2018)

    Article  CAS  Google Scholar 

  18. W. Zhao, Z. Ghorannevis, K.K. Amara et al., Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 5(20), 9677–9683 (2013)

    Article  CAS  Google Scholar 

  19. M. O’Brien, N. McEvoy, D. Hanlon et al., Mapping of low-frequency Raman modes in CVD-grown transition metal dichalcogenides: layer number, stacking orientation and resonant effects. Sci. Rep. 6, 19476 (2016)

    Article  Google Scholar 

  20. D. Wu, Z. Guo, J. Peng et al., Size effect of WSe2 on red passively Q-switched fiber laser output performance. Appl. Opt. 57, 4955–4959 (2018)

    Article  CAS  Google Scholar 

  21. S. Das, J. Appenzeller, WSe2 field effect transistors with enhanced ambipolar characteristics. Appl. Phys. Lett. 103(10), 103501 (2013)

    Article  Google Scholar 

  22. A. Konar, T. Fang, D. Jena, Effect of high-k gate dielectrics on charge transport in graphene-based field effect transistors. Phys. Rev. B 82(11), 115452 (2010)

    Article  Google Scholar 

  23. D. Jena, A. Konar, Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. Phys. Rev. Lett. 98(13), 136805 (2007)

    Article  Google Scholar 

  24. Y. Pan, K. Jia, K. Huang et al., Near-ideal subthreshold swing MoS2 backgate transistors with an optimized ultrathin HfO2 dielectric layer. Nanotechnology 30(9), 095202 (2019)

    Article  CAS  Google Scholar 

  25. S. Gholami, M. Khakbaz, Measurement of I-V characteristics of a PtSi/p-Si Schottky barrier diode at low temperatures. World Acad. Sci. Eng. Technol. 57, 1001–1004 (2011)

    Google Scholar 

  26. A.J. Mathai, C.K. Sumesh, B.P. Modi, Schottky barriers on layered anisotropic semiconductor—WSe2—with 1000 Å Indium metal thickness. Mater. Sci. Appl. 2(8), 1000–1006 (2011)

    CAS  Google Scholar 

  27. A. Klein, Y. Tomm, R. Schlaf et al., Photovoltaic properties of WSe2 single-crystals studied by photoelectron spectroscopy. Sol. Energy Mater Sol. Cells 51, 181–191 (1998)

    Article  CAS  Google Scholar 

  28. Y. Liu, J. Guo, E. Zhu, Approaching the Schottky-Mott limit in van der Waals metal–semiconductor junctions. Nature 557(7707), 696–700 (2018)

    Article  CAS  Google Scholar 

  29. R.T. Tung, The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev. 1(1), 011304 (2014)

    Article  Google Scholar 

  30. Y. Zhang, K. Jia, J. Liu et al., The optimization of contact interface between metal/MoS2 FETs by oxygen plasma treatment. J. Mater. Sci. Mater. Electron. 31(12), 9660–9665 (2020)

    Article  CAS  Google Scholar 

  31. C. Gong, H. Zhang, W. Wang et al., Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl. Phys. Lett. 103(5), 053513 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the MOST of China (Grant No. 2016YFA0202300), the NSFC (Grant No. 61774168), the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. Y9YQ01R004), and the Opening Project of Key Laboratory of Microelectronic Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences (Grant No. E0YS01X001 and No. E0290X03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaxiang Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, Y., Sun, X. et al. High-performance multilayer WSe2 p-type field effect transistors with Pd contacts for circuit applications. J Mater Sci: Mater Electron 32, 17427–17435 (2021). https://doi.org/10.1007/s10854-021-06274-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06274-x

Navigation