Skip to main content
Log in

Optical features of PbBr2 semiconductor thin films for radiation attenuation application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work the synthesis by thermal evaporation and optical characterization of the semiconductor thin film lead bromide (PbBr2) is reported, discussing its possible applicability in attenuation of UV radiation and ionizing radiation. In order to show the quality of the samples and their possible application, a series of experimental studies was carried out by means of X-ray diffraction that allowed establishing the crystallinity of the samples and scanning electron microscopy for the study of surface morphology, evidencing a high degree of film coating. Diffuse reflectance and transmittance spectroscopy experiments were used to study the optical properties of the material, finding a weakly semiconductor optical gap of 3.5 eV, which absorbs much of the radiation from a broad spectrum of ultraviolet, from 200 to 350 nm. The high value of the Pb atomic number favors the absorption of high-energy photons, and the mass absorption coefficient as well as the appearance of a doublet of transitions in the PL spectrum in the UV radiation regime, suggest the applicability of PbBr2 in the design of medical diagnostic and treatment equipment that involves ionizing radiation. Additionally, high transparency of the thin film was found as corroborated by the extinction coefficient, which could be useful for applications in microelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Mutalikdesai, S.K. Ramasesha, Resonance 22, 1061–1083 (2017)

    Article  CAS  Google Scholar 

  2. Y. Liu et al., Mater. Today 22, 67–75 (2019)

    Article  CAS  Google Scholar 

  3. J. Lan, L. Luo, M. Wang, F. Li, X. Wu, F. Wang, J. Lumin. 210, 464–471 (2019)

    Article  CAS  Google Scholar 

  4. J. Liu et al., Adv. Mater. 31, 1–8 (2019)

    Google Scholar 

  5. Y. Zhao et al., Appl. Catal. B 247, 57–69 (2019)

    Article  CAS  Google Scholar 

  6. M. Saliba et al., Energy Environ. Sci. 9, 1989–1997 (2016)

    Article  CAS  Google Scholar 

  7. F. Zhang et al., Joule 3, 1452–1463 (2019)

    Article  CAS  Google Scholar 

  8. W. Chen et al., Joule 3, 191–204 (2019)

    Article  CAS  Google Scholar 

  9. S. Yabe et al., Int. J. Inorg. Mater. 3, 1003–1008 (2001)

    Article  CAS  Google Scholar 

  10. A. Rawat, U. Soni, R.S. Malik, S.C. Pandey, Nano-struct. Nano-objects 16, 371–380 (2018)

    Article  CAS  Google Scholar 

  11. J.L. Ravanat, T. Douki, J. Cadet, J. Photochem. Photobiol. 63, 88–102 (2001)

    Article  CAS  Google Scholar 

  12. Y. Wang et al., ACS Appl. Mater. Interfaces 9, 36281–36289 (2017)

    Article  CAS  Google Scholar 

  13. N.K. Sharma et al., Front. Aging Neurosci. 10, 1–15 (2018)

    Article  Google Scholar 

  14. R.M. Lipman, B.J. Tripathi, R.C. Tripathi, Surv. Ophthalmol. 33, 200–210 (1988)

    Article  CAS  Google Scholar 

  15. A. Rajabi et al., Res. Cardiovasc. Med. 4, 4 (2015)

    Article  Google Scholar 

  16. M.I. Sayyed, F. Akman, M.R. Kaçal, A. Kumar, Nucl. Eng. Technol. 51, 860–866 (2019)

    Article  CAS  Google Scholar 

  17. N. Singh, K.J. Singh, K. Singh, H. Singh, Nucl. Instrum. Methods Phys. Res. 225, 305–309 (2004)

    Article  CAS  Google Scholar 

  18. M.A. Marzouk, F.H. ElBatal, K.M. ElBadry, H.A. ElBatal, Spectrochim. Acta A 171, 454–460 (2017)

    Article  CAS  Google Scholar 

  19. K.M. Ginell, C. Horn, R.B. Von Dreele, B.H. Toby, Powder Diffr. 34, 184–188 (2019)

    Article  CAS  Google Scholar 

  20. A.L. Patterson, Phys. Rev. 56, 978–982 (1939)

    Article  CAS  Google Scholar 

  21. A. Moses Ezhil Raj, S. Mary Delphine, C. Sanjeeviraja, M. Jayachandran, Physica B 405, 2485–2491 (2010)

    Article  CAS  Google Scholar 

  22. G.K. Williamson, R.E. Smallman, Philos. Mag. 1, 34–46 (1956)

    Article  CAS  Google Scholar 

  23. A.R. Stokes, A.J.C. Wilson, Proc. Phys. Soc. 56, 174–181 (1944)

  24. A.E. Karsten, A. Singh, P.A. Karsten, M.W.H. Braun, Lasers Med. Sci. 28, 437–444 (2013)

    Article  CAS  Google Scholar 

  25. H.A. Wahab, A.A. Salama, A.A. El-Saeid, O. Nur, M. Willander, I.K. Battisha, Results Phys. 3, 46–51 (2013)

    Article  Google Scholar 

  26. B. Karunagaran, R.T. Rajendra Kumar, C. Viswanathan, D. Mangalaraj, S.K. Narayandass, G. Mohan Rao, Cryst. Res. Technol. 38, 773–778 (2003)

    Article  CAS  Google Scholar 

  27. F. Urbach, Phys. Rev. 92, 1324 (1953)

    Article  CAS  Google Scholar 

  28. G.D. Cody, J. Non-cryst. Solids 141, 3–15 (1992)

    Article  CAS  Google Scholar 

  29. P. Sudhagar, R. Sathyamoorthy, S. Chandramohan, Appl. Surf. Sci. 254, 1919–1928 (2008)

    Article  CAS  Google Scholar 

  30. V. Sarritzu et al., Adv. Opt. Mater. 6, 1–8 (2018)

    Google Scholar 

  31. V.G. Plekhanov, Phys. Status Solidi 68, K35–K38 (1975)

    Article  CAS  Google Scholar 

  32. G. Ahmed, Y. Sharma, B.L. Ahuja, Appl. Radiat. Isot. 67, 1050–1056 (2009)

    Article  CAS  Google Scholar 

  33. R. Swanepoel, J. Phys. E 17, 896–903 (1984)

    Article  CAS  Google Scholar 

  34. J. Pankove, Optical Processes in Semiconductors (Dover Publications, New York, 1975)

  35. Q. Ren, L.Q. Liu, Z.G. Wang, X.S. An, G.H. Zhang, D. Xu, Mater. Res. Bull. 35, 471–476 (2000)

    Article  CAS  Google Scholar 

  36. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, Radiat. Phys. Chem. 71, 653–654 (2004)

    Article  CAS  Google Scholar 

  37. C.M. Ma, et al., Phys. Med. Biol. 48, 561–572 (2003)

    Article  CAS  Google Scholar 

  38. D. Cao, G. Yang, M. Bourham, D. Moneghan, Nucl. Eng. Technol. 52, 2613–2619 (2020)

    Article  CAS  Google Scholar 

  39. M. Iwanaga, M. Watanabe, T. Hayashi, J. Lumin. 87, 287–289 (2000)

    Article  Google Scholar 

  40. R. Kink, T. Avarmaa, V. Kisand, A. Löhmus, I. Kink, I. Martinson, J. Phys. Condens. Matter 10, 693–700 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially financed by División de Investigación y Extensión (DIEB), Universidad Nacional de Colombia Sede Bogotá, and MINCIENCIAS on the Project FP80740-243-2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Roa-Rojas.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torres, O.G., Gordillo, G., Plazas, M.C. et al. Optical features of PbBr2 semiconductor thin films for radiation attenuation application. J Mater Sci: Mater Electron 32, 16937–16944 (2021). https://doi.org/10.1007/s10854-021-06257-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06257-y

Navigation