Skip to main content
Log in

Sensitivity reduction mechanisms in organic perovskite X-ray detectors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The sensitivity reduction mechanisms in organic perovskite X-ray detectors are investigated in this paper by considering the dynamics of charge carrier transport across the perovskite photoconductor. A numerical model is proposed by considering bimolecular recombination, space charge effects, charge carrier trapping (monomolecular) and detrapping. The coupled continuity equations for both holes and electrons, trapping rate equations, and Poisson’s equation across the photoconductor are simultaneously solved by a finite difference method. The numerical results are compared with COMSOL simulation. The change of sensitivity is not significant for a usual single exposure in diagnostic medical X-ray imaging applications. However, the sensitivity starts decreasing rapidly for an order of magnitude higher dose rate or accumulated dose under repeated exposures. The rapid change of electric field distribution (i.e., non-uniform electric field) is mainly responsible for the reduction of X-ray sensitivity in perovskite X-ray detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The name of the software is mentioned in the text.

References

  1. S.O. Kasap, M.Z. Kabir, J.A. Rowlands, Curr. Appl. Phys. 6, 288 (2006)

    Article  Google Scholar 

  2. S. Yakunin, M. Sytnyk, D. Kriegner, S. Shrestha, M. Richter, G. Matt, H. Azimi, C. Brabec, J. Stangl, M. Kovalenko, W. Heiss, Nat. Photonics 9, 444 (2015)

    Article  CAS  Google Scholar 

  3. L. Basiricò, A. Ciavatti, B. Fraboni, Adv. Mater. Technol. 6, 2000475 (2020)

    Article  Google Scholar 

  4. Y.C. Kim, K.H. Kim, D.Y. Son, D.N. Jeong, J.Y. Seo, Y.S. Choi, I.T. Han, S.Y. Lee, N.G. Park, Nature 550, 87 (2017)

    Article  CAS  Google Scholar 

  5. S. Shrestha, R. Fischer, G. Matt, P. Feldner, T. Michel, A. Osvet, I. Levchuk, B. Merle, S. Golkar, H. Chen, S. Tedde, O. Schmidt, R. Hock, M. Rührig, M. Göken, W. Heiss, G. Anton, C. Brabec, Nat. Photonics 11, 436 (2017)

    Article  CAS  Google Scholar 

  6. M.Z. Kabir, M. Yunus, S.O. Kasap, O. Tousignant, H. Mani, P. Gauthier, Curr. Appl. Phys. 6, 393 (2006)

    Article  Google Scholar 

  7. J.M. Boone, in Handbook of medical imaging, vol. 1, ed. by J. Beutel, H.L. Kundel, R.L. Van Metter (SPIE Press, Washington, 2000)

    Google Scholar 

  8. S.O. Kasap, M.Z. Kabir, K.O. Ramaswami, R.E. Johanson, R.J. Curry, J. Appl. Phys. 128, 124501 (2020)

    Article  CAS  Google Scholar 

  9. M.Z. Kabir, S.O. Kasap, Appl. Phys. Lett. 80, 1664 (2002)

    Article  CAS  Google Scholar 

  10. D.M. Panneerselvam, M.Z. Kabir, J. Mater. Sci. Mater. Electron. 28, 7083 (2017)

    Article  CAS  Google Scholar 

  11. S.A. Mahmood, M.Z. Kabir, J. Vac. Sci. Technol. A 29, 031603 (2011)

    Article  Google Scholar 

  12. V. Adinolfi, M. Yuan, R. Comin, E.S. Thibau, D. Shi, M.I. Saidaminov, P. Kanjanaboos, D. Kopilovic, S. Hoogland, Z.-H. Lu, O.M. Bakr, E.H. Sargent, Adv. Mater. 28, 3406 (2016)

    Article  CAS  Google Scholar 

  13. T.M. Brenner, D.A. Egger, L. Kronik, G. Hodes, D. Cahen, Nat. Rev. Mater. 1, 15007 (2016)

    Article  CAS  Google Scholar 

  14. M. Pope, C.E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd edn. (Oxford University Press, New York, 1999), p. 502

    Google Scholar 

  15. Y. Chen, H.T. Yi, X. Wu, R. Haroldson, Y.N. Gartstein, Y.I. Rodionov, K.S. Tikhonov, A. Zakhidov, X.-Y. Zhu, V. Podzorov, Nat. Commun. 7, 12253 (2016). https://doi.org/10.1038/ncomms12253

    Article  CAS  Google Scholar 

  16. J. Huang, Y. Yuan, Y. Shao, Y. Yan, Nat. Rev. Mater. 2, 17042 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from NSERC through its Discovery Grant program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. Kabir.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoq, A., Panneerselvam, D.M. & Kabir, M.Z. Sensitivity reduction mechanisms in organic perovskite X-ray detectors. J Mater Sci: Mater Electron 32, 16824–16830 (2021). https://doi.org/10.1007/s10854-021-06240-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06240-7

Navigation