Skip to main content
Log in

Synthesis and study of physicochemical properties of Fe3O4@ZnFe2O4 core/shell nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, Fe3O4@ZnFe2O4 core/shell nanoparticles were obtained by depositing ZnO by the wet chemistry method on the surface of Fe3O4 nanoparticles seeds obtained by the chemical bath deposition method. Fe3O4 and Fe3O4@ZnFe2O4 were characterized by Field Emission Scanning Electron Microscopy, Energy Dispersive X-ray Spectrometry, Transmission Electron Microscopy, X-ray Diffraction, Ultraviolet–Visible Spectroscopy, Diffuse Reflectance, and Fourier Transformed Infrared Spectroscopy (FTIR). The Fe3O4@ZnFe2O4 nanoparticles formed an urchin-like spheres morphology (corresponding to Fe3O4) with a homogeneous shell of ZnFe2O4. XRD analysis showed a magnetite crystal structure for Fe3O4 and a franklinite (ZnFe2O4) crystal structure for the shell. Fe3O4@ZnFe2O4 showed higher crystallinity when applying a heat treatment, showing a crystal size of 9.12 nm with heat treatment and 9.43 nm without heat treatment. The diffuse reflectance results suggested an indirect band gap of 1.85 eV for Fe3O4 and two indirect band gaps of 1.85 eV and 2.54 eV for Fe3O4@ZnFe2O4. The FTIR results showed the effect of heat treatment on Fe3O4@ZnFe2O4 core/shell nanoparticles. A simple method was used for the synthesis of Fe3O4@ZnFe2O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Additional data and material to those reported in the experimental section can be shared upon request.

References

  1. R.G. Chaudhuri, S. Paria, Chem. Rev. 112, 2373 (2012)

    Article  Google Scholar 

  2. A.M. El-Toni, M.A. Habila, J.P. Labis, Z.A. Alothman, M. Alhoshan, A.A. Elzatahry, F. Zhang, Nanoscale 8, 2510 (2016)

    Article  CAS  Google Scholar 

  3. L. Wang, Y. Yamauchi, J. Am. Chem. Soc. 135, 16762 (2013)

    Article  CAS  Google Scholar 

  4. L. Wang, Y. Yamauchi, J. Am. Chem. Soc. 132, 13636 (2010)

    Article  CAS  Google Scholar 

  5. J. Wan, H. Li, K. Chen, Mater. Chem. Phys. 114, 30 (2009)

    Article  CAS  Google Scholar 

  6. Y.J. Chen, F. Zhang, G.G. Zhao, X.Y. Fang, H.B. Jin, P. Gao, C.L. Zhu, M.S. Cao, G. Xiao, J. Phys. Chem. C. 114, 9239 (2010)

    Article  CAS  Google Scholar 

  7. W. Yan, H. Fan, C. Yang, Mater. Lett. 65, 1595 (2011)

    Article  CAS  Google Scholar 

  8. F. Wang, J. Liu, X. Wang, J. Kong, S. Qiu, G. Lu, C. He, Mater. Lett. 76, 159 (2012)

    Article  CAS  Google Scholar 

  9. W. Wu, S. Zhang, X. Xiao, J. Zhou, F. Ren, L. Sun, C. Jiang, ACS Appl. Mater. Interfaces 4, 3602 (2012)

    Article  CAS  Google Scholar 

  10. J. Xie, Z. Zhou, Y. Lian, Y. Hao, P. Li, Y. Wei, Ceram. Int. 41, 2622 (2015)

    Article  CAS  Google Scholar 

  11. J. Jaramillo, B.W. Boudouris, C.A. Barrero, F. Jaramillo, ACS Appl. Mater. Interfaces 7, 25061 (2015)

    Article  CAS  Google Scholar 

  12. A.A. Shal, A. Jafari, J. Supercond. Nov. Magn. 27, 1531 (2014)

    Article  Google Scholar 

  13. W. Chiu, P. Khiew, M. Cloke, D. Isa, H. Lim, T. Tan, N. Huang, S. Radiman, R. Abd-Shukor, M.A. Abd. Hamid, C. Chia, J. Phys. Chem. C. 114, 8212 (2010)

    Article  CAS  Google Scholar 

  14. S. Si, C. Li, X. Wang, Q. Peng, Y. Li, Sens. Actuators B 119, 52 (2006)

    Article  CAS  Google Scholar 

  15. J. Zhang, X. Liu, L. Wang, T. Yang, X. Guo, S. Wu, S. Wang, S. Zhang, Nanotechnology 22, 185501 (2011)

    Article  Google Scholar 

  16. C.L. Zhu, Y.J. Chen, R.X. Wang, L.J. Wang, M.S. Cao, X.L. Shi, Sens. Actuators B 140, 185 (2009)

    Article  CAS  Google Scholar 

  17. J. Liu, G. Liu, C. Yuan, L. Chen, X. Tian, M. Fang, New J. Chem. 42, 3736–3747 (2018)

    Article  CAS  Google Scholar 

  18. U. Khan, N. Adeela, C.H. Wan, M. Irfan, S. Naseem, S. Riaz, M. Iqbal, X.F. Han, Superlattices Microstruct. 92, 374 (2016)

    Article  CAS  Google Scholar 

  19. S. Ghimire, J. Dho, S. Geul Lee, Thin Solid Films 707, 138073 (2020)

    Article  CAS  Google Scholar 

  20. M. Fuentes-Pérez, M.E. Nicho, M. Sotelo-Lerma, J.L. Fuentes-Ríos, J. Castrellón-Uribe, U. León-Silva, F. Hernández-Guzmán, S. García-Carvajal, Eur. Polym. J. 99, 172 (2018)

    Article  Google Scholar 

  21. B. Wang, H. Wu, L. Yu, R. Xu, T.T. Lim, X.W. Lou, Adv. Mater. 24, 1111 (2012)

    Article  CAS  Google Scholar 

  22. S. Bharathi, D. Nataraj, D. Mangalaraj, Y. Masuda, K. Senthil, K. Yong, J. Phys. D: Appl. Phys. 43, 015501 (2010)

    Article  Google Scholar 

  23. J.S. Justus, S.D.D. Roy, A.M.E. Raj, Mater. Res. Express. 3, 105037 (2016)

    Article  Google Scholar 

  24. E.A. Deliyanni, D.N. Bakoyannakis, A.I. Zouboulis, K.A. Matis, L. Nalbandian, Microporous Mesoporous Mater. 42, 49–57 (2001)

    Article  CAS  Google Scholar 

  25. E.A. Campos, D.V.B.S. Pinto, J.I.S. de Oliveira, E.D.C. Mattos, R.D.C.L. Dutra, J. Aerosp. Technol. Manag. 7, 267–276 (2015)

    Article  CAS  Google Scholar 

  26. W. Cai, J. Wan, J. Coll. Inter. Sci. 305, 366–370 (2007)

    Article  CAS  Google Scholar 

  27. I. Kazeminezhad, S. Mosivand, Acta Phys. Pol., A 125, 1210–1214 (2014)

    Article  Google Scholar 

  28. H. Wei, W. Yang, Q. Xi, X. Chen, Mater. Lett. 82, 224–226 (2012)

    Article  CAS  Google Scholar 

  29. G.W. Poling, J Electrochem Soc. 116, 958–963 (1969)

    Article  CAS  Google Scholar 

  30. A.C.S. da Costa, I.G. de Souza, M.A. Batista, K.L. da Silva, J.V. Bellini, A. Paesano, Hyperfine Interact. 175, 103 (2007)

    Article  Google Scholar 

  31. R.Y. Hong, S.Z. Zhang, G.Q. Di, H.Z. Li, Y. Zheng, J. Ding, D.G. Wei, Mater. Res. Bull. 43, 2457 (2008)

    Article  CAS  Google Scholar 

  32. J. Wang, J. Yang, X. Li, D. Wang, B. Wei, H. Song, X. Li, S. Fu, Phys. E. 75, 66 (2016)

    Article  CAS  Google Scholar 

  33. H.L. Liu, J. Wu, J.H. Min, X. Zhang, Y.K. Kim, Mater. Res. Bull. 48, 551 (2013)

    Article  CAS  Google Scholar 

  34. C. Karunakaran, P. Vinayagamoorthy, J. Jayabharathi, Langmuir 30, 15031 (2014)

    Article  CAS  Google Scholar 

  35. A. Kajbafvala, S. Zanganeh, E. Kajbafvala, H.R. Zargar, M.R. Bayati, S.K. Sadrnezhaad, J. Alloys Compd. 497, 325 (2010)

    Article  CAS  Google Scholar 

  36. R.L. Nyirenda, Miner. Eng. 3, 319 (1990)

    Article  CAS  Google Scholar 

  37. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Blue Kingfisher, Hong Kong, 2021).

    Google Scholar 

  38. C. Kittel, Introduction to Solid State Physics (Maruzen, Tokyo, 1973).

    Google Scholar 

  39. V.D. Mote, Y. Purushotham, B.N. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6, 6 (2012)

    Article  Google Scholar 

  40. F. Iqbal, M.I.A. Mutalib, M.S. Shaharun, M. Khan, B. Abdullah, Procedia Eng. 148, 787–794 (2016)

    Article  CAS  Google Scholar 

  41. D.J. Sornalatha, P. Murugakoothan, Int. J. Emerg. Technol. Adv. Eng. 3, 414–418 (2013)

    Google Scholar 

  42. E.B. Díaz-Cruz, O.A. Castelo-González, C. Martínez-Alonso, Z. Montiel-González, M.C. Arenas-Arrocena, H. Hu, Mater. Sci. Semicond. Process. 75, 311 (2018)

    Article  Google Scholar 

  43. K. Shetty, L. Renuk, H.P. Nagaswarupa, H. Nagabhushana, K.S. Anantharaju, D. Rangappa, S.C. Prashantha, K. Ashwini, Mater. Today: Proc. 4, 11806 (2017)

    Google Scholar 

  44. S.K. Kwon, K. Shinoda, S. Suzuki, Y. Waseda, Corr. Sci. 49, 1513 (2007)

    Article  CAS  Google Scholar 

  45. S.S. Raut, B.R. Sankapal, Electrochim. Acta. 198, 203 (2016)

    Article  CAS  Google Scholar 

  46. G. Xiong, U. Pal, J.G. Serrano, K.B. Ucer, R.T. Williams, Phys. stat. Solid (c) 3, 3577 (2006)

    Article  CAS  Google Scholar 

  47. S. Maensiria, P. Laokula, V. Promarak, J. Cryst. Growth. 289, 102 (2006)

    Article  Google Scholar 

  48. G. Xian, S. Kong, Q. Li, G. Zhang, N. Zhou, H. Du, L. Niu, Front. Chem. 8, 1 (2020)

    Article  Google Scholar 

  49. K. Gydryovft, V. Balek, J. Therm. Anal. 40, 519 (1993)

    Article  Google Scholar 

  50. F.M. Martins, J.M. dos Reis Neto, C.J. da Cunha, J. Hazard. Mater. 154, 417 (2008)

    Article  CAS  Google Scholar 

  51. C. Cai, Z. Zhang, J. Liu, N. Shan, H. Zhang, D.D. Dionysiou, Appl. Catal. B: Environ. 182, 456 (2016)

    Article  CAS  Google Scholar 

  52. F. Ansari, M. Salavati-Niasari, O. Amiri, N. Mir, B.A. Nejand, V. Ahmadi, Ind. Eng. Chem. Res. 59, 743–750 (2020)

    Article  CAS  Google Scholar 

  53. K. Wang, C. Yi, X. Hu, C. Liu, Y. Sun, J. Hou, Y. Li, J. Zheng, S. Chuang, A. Karim, X. Gong, ACS Appl. Mater. Interfaces. 6, 13201–13208 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dra. Mary Cruz Resendiz Gonzalez for FESEM images, and Dra. Maria Luisa Ramón Garcia for XRD measurements. The TEM experiments performed at the TEM Laboratory of Universidad de Sonora are recognized.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

MF: Conceptualization, Investigation, Validation, and Writing—original draft preparation. MS: Methodology and Validation. JLF: Validation. EGM: Formal analysis and Validation. MS: Formal analysis and Validation. MEN: Conceptualization, Funding acquisition, Methodology, Project Administration, Resources, Supervision, and Writing—review & editing.

Corresponding author

Correspondence to M. E. Nicho.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuentes-Pérez, M., Sotelo-Lerma, M., Fuentes-Ríos, J.L. et al. Synthesis and study of physicochemical properties of Fe3O4@ZnFe2O4 core/shell nanoparticles. J Mater Sci: Mater Electron 32, 16786–16799 (2021). https://doi.org/10.1007/s10854-021-06236-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06236-3

Navigation