Skip to main content
Log in

Effect of rare-earth (Sm, Ce, and La) ions doping on the lattice structure and magnetic properties of Zn–Ba–Co ferrites by sol–gel auto-combustion method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Rare-earth ions doped Zn–Ba–Co ferrite with chemical composition Zn0.1Ba0.2Co0.7Fe2−xRExO4 (Sm, Ce, La, and x = 0.02) were prepared by sol–gel auto-combustion method. X-ray diffraction (XRD) results confirmed that rare-earth ions doped Zn–Ba–Co ferrite had spinel structure. The average crystallite sizes were found to be between 21.1 and 31.0 nm, which were calculated by Scherrer’s formula. The Fourier transform infrared (FT-IR) spectra also confirmed the formation of spinel structure. The morphology of prepared samples was observed by scanning electron microscope (SEM) and transmission electron microscope (TEM). The chemical compositions of prepared samples were analyzed by energy dispersive spectrometer (EDS). It is confirmed that the elements of samples are composed of Zn, Ba, Co, Fe, O, and rare-earth elements. The magnetic parameters of the samples are measured by vibrating sample magnetometer (VSM) at room temperature. It can be clearly observed that the saturation magnetization (Ms), remanent magnetization (Mr), and coercivity (Hc) varied with the doping of different rare-earth ions. La3+ doped Zn–Ba–Co sample had the highest Ms. It showed that rare-earth ions had greater effects on the magnetic properties of Zn–Ba–Co ferrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12

Similar content being viewed by others

References

  1. T.M. Hammad, S. Kuhn, A.A. Amsha, R. Hempelmann, Investigation of structural, optical, and magnetic properties of Co2+ ions substituted CuFe2O4 spinel ferrite nanoparticles prepared via precipitation approach. J. Aust. Ceram. Soc. 57, 543–553 (2021)

    Article  CAS  Google Scholar 

  2. K.M. Batoo, E.H. Raslan, Y. Yang, S.F. Adil, M. Khan, A. Imran, Y. Al-Douri, Structural, dielectric and low temperature magnetic response of Zn doped cobalt ferrite nanoparticles. AIP Adv. (2019). https://doi.org/10.1063/1.5078411

    Article  Google Scholar 

  3. M.A. Aleem Ali El-Remaily, A.M. Abu-Dief, R.M. El-Khatib, A robust synthesis and characterization of superparamagnetic CoFe2O4 nanoparticles as an efficient and reusable catalyst for green synthesis of some heterocyclic rings. Appl. Organometal. Chem. 30, 1022–1029 (2016)

    Article  CAS  Google Scholar 

  4. W.S. Mohamed, M. Alzaid, M.S.M. Abdelbaky, Z. Amghouz, S. García-Granda, A.M. Abu-Dief, Impact of Co2+ substitution on microstructure and magnetic properties of CoxZn1-xFe2O4 nanoparticles. Nanomaterials 9, 1602 (2019). https://doi.org/10.3390/nano9111602

    Article  CAS  Google Scholar 

  5. W.S. Mohamed, A.M. Abu-Dief, Impact of rare earth europium (RE-Eu3+) ions substitution on microstructural, optical and magnetic properties of CoFe2−xEuxO4 nanosystems. Ceram. Int. 46, 16196–16209 (2020)

    Article  CAS  Google Scholar 

  6. Y. Benkaddour, A. Abdelaoui, A. Yakoubi, H. Khachai, Y. Al-Douri, S. Bin Omran, A. Shankar, R. Khenata, C.H. Voon, D. Prakash, K.D. Verma, First-principle calculations of structural, elastic, and electronic properties of intermetallic rare earth R2Ni2Pb (R = Ho, Lu, and Sm) compounds. J. Supercond. Nov. Magn. 31, 395–403 (2018)

    Article  CAS  Google Scholar 

  7. S. Belhachi, A. Lazreg, Z. Dridi, Y. Al-Douri, Electronic and magnetic investigations of rare-earth Tm-doped AlGaN ternary alloy. J. Supercond. Nov. Magn. 31, 1767–1771 (2018)

    Article  CAS  Google Scholar 

  8. L. Hasni, M. Ameri, D. Bensaid, I. Ameri, S. Mesbah, Y. Al-Douri, J. Coutinho, First-principles calculations of structural, magnetic electronic and optical properties of rare-earth metals TbX (X=N, O, S, Se). J. Supercond. Nov. Magn. 30, 3471–3479 (2017)

    Article  CAS  Google Scholar 

  9. F. Benosman, Z. Dridi, Y. Al-Douri, B. Bouhafs, Investigated electronic structure and magnetic ordering of rare earth impurities (Eu, Gd) in ZnO. Int. J. Mod. Phys. B 30, 1650225 (2016)

    Article  CAS  Google Scholar 

  10. F. Khelfaoui, M. Ameri, D. Bensaid, I. Ameri, Y. Al-Douri, Structural, elastic, thermodynamic, electronic, and magnetic investigations of full-Heusler compound Ag2CeAl: FP-LAPW method. J. Supercond. Nov. Magn. 31, 3183–3192 (2018)

    Article  CAS  Google Scholar 

  11. O. Amrich, M.E.A. Monir, H. Baltach, S.B. Omran, X.W. Sun, X. Wang, Y. Al-Douri, A. Bouhemadou, R. Khenata, Half-metallic ferrimagnetic characteristics of Co2YZ (Z = P, As, Sb, and Bi) new full-Heusler alloys: a DFT study. J. Supercond. Nov. Magn. 31, 241–250 (2018). https://doi.org/10.1007/s10948-017-4206-2

    Article  CAS  Google Scholar 

  12. E. Ateia, A.A.H. El-Bassuony, Fascinating improvement in physical properties of Cd/Co nanoferrites using different rare earth ions. J. Mater. Sci. Mater. Electron 28, 11482–11490 (2017)

    Article  CAS  Google Scholar 

  13. S. Amiri, H. Shokrollahi, Magnetic and structural properties of RE doped Co-ferrite (RE=Nd, Eu, and Gd) nano-particles synthesized by co-precipitation. J. Magn. Magn. Mater. 345, 18–23 (2013)

    Article  CAS  Google Scholar 

  14. H. Harzali, A. Marzouki, F. Saida, A. Megriche, A. Mgaidi, Structural, magnetic and optical properties of nanosized Ni0.4Cu0.2Zn0.4R0.05Fe1.95O4 (R=Eu3+, Sm3+, Gd3+ and Pr3+) ferrites synthesized by co-precipitation method with ultrasound irradiation. J. Magn. Magn. Mater. (2018). https://doi.org/10.1016/j.jmmm.2018.03.062

    Article  Google Scholar 

  15. S.E. Shirsath, R.H. Kadam, S.M. Patange, M.L. Mane, A. Ghasemi, Enhanced magnetic properties of Dy3+ substituted Ni–Cu–Zn ferrite nanoparticles. Appl. Phys. Lett. 100, 042407 (2012)

    Article  Google Scholar 

  16. A.A. Marzouk, A.M. Abu-Dief, A.A. Abdelhamid, Hydrothermal preparation and characterization of ZnFe2O4 magnetic nanoparticles as an efficient heterogeneous catalyst for the synthesis of multi-substituted imidazoles and study of their anti-inflammatory activity. Appl. Organometal. Chem. 32, e3794 (2018)

    Article  Google Scholar 

  17. W.S. Mohamed, A.M. Abu-Dief, Synthesis, characterization and photocatalysis enhancement of Eu2O3-ZnO mixed oxide nanoparticles. J. Phys. Chem. Solids 116, 375–385 (2018)

    Article  CAS  Google Scholar 

  18. A.M. Abu-Dief, W.S. Mohamed, α-Bi2O3 nanorods: synthesis, characterization and UV-photocatalytic activity. Mater. Res. Express 4, 035039 (2017)

    Article  Google Scholar 

  19. A.M. Abu-Dief, A.A. Essawy, A.K. Diab, W.S. Mohamed, Facile synthesis and characterization of novel Gd2O3-CdO binary mixed oxide nanocomposites of highly photocatalytic activity for wastewater remediation under solar illumination. J. Phys. Chem. Solids 148, 109666 (2021)

    Article  CAS  Google Scholar 

  20. D. Kumar, A. Kumar, R. Prakash, A.K. Singh, X-ray diffraction analysis of Cu2+ doped Zn1-xCuxFe2O4 spinel nanoparticles using Williamson-Hall plot method. Adv. Basic Sci. (2019). https://doi.org/10.1063/1.5122410

    Article  Google Scholar 

  21. S.F. Mansour, O.M. Hemeda, S.I. El-Dek, B.I. Salem, Influence of La doping and synthesis method on the properties of CoFe2O4 nanocrystals. J. Magn. Magn. Mater. 420, 7–18 (2016)

    Article  CAS  Google Scholar 

  22. M. Khan, S. Bisen, J. Shukla, A. Mishra, P. Sharma, Investigations on the structural and electrical properties of Sm3+-doped nickel ferrite-based ceramics. J. Supercond. Nov. Magn. (2021). https://doi.org/10.1007/s10948-020-05754-1

    Article  Google Scholar 

  23. S. Qamar, M.N. Akhtar, W. Aleem, Z. ur Rehman, A.H. Khan, A. Ahmad, K.M. Batoo, M. Aamir, Graphene anchored Ce doped spinel ferrites for practical and technological applications. Ceram. Int. 46, 7081–7088 (2020)

    Article  CAS  Google Scholar 

  24. M.D. Shultz, E.E. Carpenter, S.A. Morrison, S. Calvin, Cation occupancy determination in manganese zinc ferrites using Fourier transform infrared spectroscopy. J. Appl. Phys. 99, 83–86 (2006)

    Article  Google Scholar 

  25. C. Virlan, G. Bulai, O.F. Caltun, R. Hempelmann, A. Pui, Rare earth metals’ influence on the heat generating capability of cobalt ferrite nanoparticles. Ceram. Int. 42, 11958–11965 (2016)

    Article  CAS  Google Scholar 

  26. S.G. Gawas, U.B. Gawas, V.M.S. Verenkar, M.M. Kothawale, R. Pednekar, Structural and magnetic studies of Cu-substituted nanocrystalline Ni–Zn ferrites obtained via hexamine-nitrate combustion route. J. Supercond. Nov. Magn. 30, 1447–1452 (2017)

    Article  CAS  Google Scholar 

  27. K. Mohit, V.R. Gupta, N. Gupta, S.K. Rout, Structural and microwave characterization of Ni0.2CoxZn0.8-xFe2O4 for antenna applications. Ceram. Int. 40, 1575–1586 (2014)

    Article  CAS  Google Scholar 

  28. X.G. Pan, A.M. Sun, Y.Q. Han, Effects of different sintering temperature on structural and magnetic properties of Ni–Cu–Co ferrite nanoparticles. Mod. Phys. Lett. B. 32, 1850321 (2018)

    Article  CAS  Google Scholar 

  29. M.A. Dar, V. Verma, S.P. Gairola, W.A. Siddiqui, R.K. Singh, R.K. Kotnala, Low dielectric loss of Mg doped Ni–Cu–Zn nano-ferrites for power applications. Appl. Surf. Sci. 258, 5342–5347 (2012)

    Article  Google Scholar 

  30. S. Maensiri, C. Masingboon, B. Boonchomb, S. Seraphinc, A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white. Scr. Mater. 56, 797–800 (2007)

    Article  CAS  Google Scholar 

  31. M.J.P. Asl, A. Ghasemi, G.R. Ordani, Structural and magnetic properties of Mn–Ni–Cu substitution of Z-type barium hexaferrite nanoparticles prepared by the coprecipitation method. J. Supercond. Nov. Magn. 28, 109–115 (2015)

    Article  Google Scholar 

  32. B.G. Toksha, S.E. Shirsath, M.L. Mane, S.M. Patange, S.S. Jadhav, K.M. Jadhav, Autocombustion high-temperature synthesis, structural, and magnetic properties of CoCrxFe2-xO4 (0≤x≤1.0). J. Phys. Chem. C 115, 20905–20912 (2011)

    Article  CAS  Google Scholar 

  33. A. Azam, A. Jawad, A.S. Ahmed, M. Chaman, A.H. Naqvi, Structural, optical and transport properties of Al3+ doped BiFeO3 nanopowder synthesized by solution combustion method. J. Alloys Compd. 509, 2909–2913 (2011)

    Article  CAS  Google Scholar 

  34. N. Suo, A. Sun, L. Yu, Z. Zuo, X. Pan, W. Zhang, X. Zhao, Y. Zhang, L. Shao, Effect of different rare earth (RE = Y3+, Sm3+, La3+ and Yb3+) ions doped on the magnetic properties of Ni–Cu–Co ferrite nanomagnetic materials. J. Mater. Sci. Mater. Electron 32, 246–264 (2021)

    Article  CAS  Google Scholar 

  35. K.S. Aneesh Kumar, R.N. Bhowmik, Micro-structural characterization and magnetic study of Ni1.5Fe1.5O4 ferrite synthesized through coprecipitation route at different pH values. Mater. Chem. Phys. 146, 159–169 (2014)

    Article  CAS  Google Scholar 

  36. Y. Köseoǧlu, F. Alan, M. Tan, R. Yilgin, M. Öztürk, Low temperature hydrothermal synthesis and characterization of Mn doped cobalt ferrite nanoparticles. Ceram. Int. 38, 3625–3634 (2012)

    Article  Google Scholar 

  37. V. Chaudhari, S.E. Shirsath, M.L. Mane, R.H. Kadam, S.B. Shelke, D.R. Mane, Crystallographic, magnetic and electrical properties of Ni0.5Cu0.25Zn0.25LaxFe2-xO4 nanoparticles fabricated by sol–gel method. J. Alloys Compd. 549, 213–220 (2013)

    Article  CAS  Google Scholar 

  38. L. Yang, Z. Wang, B. Zhai, Y. Shao, Z. Zhang, Y. Sun, J. Yang, Magnetic properties of Eu3+ lightly doped ZnFe2O4 nanoparticles. Ceram. Int. 39, 8261–8266 (2013)

    Article  CAS  Google Scholar 

  39. S.S. Jadhav, S.E. Shirsath, S.M. Patange, K.M. Jadhav, Effect of Zn substitution on magnetic properties of nanocrystalline cobalt ferrites. J. Appl. Phys. 108, 2–6 (2010)

    Article  Google Scholar 

  40. E.E. Ateia, F.S. Soliman, Modifification of Co/Cu nanoferrites properties via Gd3+/Er3+ doping. Appl. Phys. A 123, 312 (2017)

    Article  Google Scholar 

  41. S. Verma, J. Chand, M. Singh, Effect of In3+ ions doping on the structural and magnetic properties of Mg0.2Mn0.5Ni0.3InxFe2-xO4 spinel ferrites. J. Magn. Magn. Mater. 324, 3252–3260 (2012)

    Article  CAS  Google Scholar 

  42. X. Pan, A. Sun, Y. Han, Structural and magnetic properties of Bi3+ ion doped Ni–Cu–Co nano ferrites prepared by sol–gel auto combustion method. J. Mater. Sci. Mater. Electron (2019). https://doi.org/10.1007/s10854-019-00757-8

    Article  Google Scholar 

  43. J. Lin, Y. He, Q. Lin, R. Wang, H. Chen, Microstructural and Mössbauer spectroscopy studies of Mg1-xZnxFe2O4 (x = 0.5, 0.7) nanoparticles. J. Spectrosc. (2014). https://doi.org/10.1155/2014/540319

    Article  Google Scholar 

  44. P. Motavallian, B. Abasht, H. Abdollah-Pour, Zr doping dependence of structural and magnetic properties of cobalt ferrite synthesized by sol–gel based Pechini method. J. Magn. Magn. Mater. 451, 577–586 (2018)

    Article  CAS  Google Scholar 

  45. I.P. Muthuselvam, R.N. Bhowmik, Mechanical alloyed Ho3+ doping in CoFe2O4 spinel ferrite and understanding of magnetic nanodomains. J. Magn. Magn. Mater. 322, 767–776 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YZ contributed to experiment, conceptualization, investigation, writing––original draft, and visualization; AS checked and revised the manuscript; ZS helped in measurement of data, experimental process, and checking the figure.

Corresponding author

Correspondence to Aimin Sun.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Sun, A. & Suonan, Z. Effect of rare-earth (Sm, Ce, and La) ions doping on the lattice structure and magnetic properties of Zn–Ba–Co ferrites by sol–gel auto-combustion method. J Mater Sci: Mater Electron 32, 16505–16518 (2021). https://doi.org/10.1007/s10854-021-06207-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06207-8

Navigation