Skip to main content
Log in

Iron/epoxy random metamaterials with adjustable epsilon-near-zero and epsilon-negative property

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Metamaterials with metal conductive phase always suffer from their high negative permittivity (epsilon-negative), the mechanism of negative permittivity is still need to be explored. Herein, we prepared iron (Fe)/epoxy composites by mechanical mixing and pressure forming. With the increase of Fe content, the conductive behavior changed from hopping conduction to metal-like conduction. The permittivity became negative when the iron content exceeded the percolation threshold (0.425), the negative permittivity was caused by the plasma oscillation of delocalized electrons in the iron conductive network. Besides, when the iron content was 50, 55, 60 or 70 vol%, the permittivity changed from negative to positive at certain frequency points, which is called epsilon-near-zero property. We used the Debye-Drude model to analyze this special dielectric behavior, and the fitting results are in good agreement with the experimental results. A transformation from capacitive to inductive was founded by using equivalent circuit analysis model, this suggests that the occurrence of negative permittivity is accompanied by the appearance of inductance and the negative permittivity behavior is inductance. The epsilon-near-zero and epsilon-negative property could be adjusted effectively by simply changing iron content. Our work provides an understanding guidance on the mechanism of epsilon-negative and epsilon-near-zero property and offers an efficient way to regulate the dielectric property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, X. Zhang, Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–379 (2008)

    CAS  Google Scholar 

  2. S. Lee, C. Park, Y. Seo, C. Kim, Reversed Doppler effect in double negative metamaterials. Phys. Rev. B 81, 241102 (2010)

    Google Scholar 

  3. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C. Soukoulis, Magnetic response of metamaterials at 100 terahertz. Science 306, 1351–1353 (2004)

    CAS  Google Scholar 

  4. W. Padilla, D. Basov, D. Smith, Negative refractive index metamaterials. Mater. Today 9, 28–35 (2006)

    CAS  Google Scholar 

  5. A. Houck, J. Brock, I. Chuang, Experimental observations of a left-handed material that obeys Snell’s Law. Phys. Rev. Lett. 90, 137401 (2003)

    Google Scholar 

  6. A. Zharov, I. Shadrivov, Y. Kivshar, Nonlinear properties of left-handed metamaterials. Phys. Rev. Lett. 91, 037401 (2003)

    Google Scholar 

  7. A. Cho, Voila! cloak of invisibility unveiled. Science 314, 403 (2006)

    CAS  Google Scholar 

  8. T. Ergin, N. Stenger, P. Brenner, J. Pendry, M. Wegener, Three-dimensional invisibility cloak at optical wavelengths. Science 328, 337–339 (2010)

    CAS  Google Scholar 

  9. N. Landy, S. Sajuyigbe, J. Mock, D. Smith, W. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)

    CAS  Google Scholar 

  10. W. Li, U. Guler, N. Kinsey, G. Naik, A. Boltasseva, J. Guan, V. Shalaev, A. Kildishev, Plasmonics: refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv. Mater. 26, 7921–7921 (2014)

    Google Scholar 

  11. B. Edwards, A. Alù, M. Young, M. Silveirinha, N. Engheta, Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide. Phys. Rev. Lett. 100, 033903 (2008)

    Google Scholar 

  12. N. Engheta, Pursuing near-zero response. Science 340, 286–287 (2013)

    CAS  Google Scholar 

  13. N. Wu, X. Bai, B. Dong, R. Wei, N. Naik, R. Patil, Z. Guo, Recent advances of asymmetric supercapacitors. Adv. Mater. Interfaces 8, 2001710 (2020)

    Google Scholar 

  14. H. Chen, Metamaterials: constitutive parameters, performance, and chemical methods for realization. J. Mater. Chem. 21, 6452–6463 (2011)

    CAS  Google Scholar 

  15. Y. Huang, Z. Yao, F. Hu, C. Liu, L. Yu, Y. Jin, X. Xu, Tunable circular polarization conversion and asymmetric transmission of planar chiral graphene-metamaterial in terahertz region. Carbon 119, 305–313 (2017)

    CAS  Google Scholar 

  16. J. Pendry, A. Holden, W. Stewart, I. Youngs, Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996)

    CAS  Google Scholar 

  17. J. Pendry, A. Holden, D. Robbins, W. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theor. Technol. 47, 2075–2084 (1999)

    Google Scholar 

  18. J. Gao, X. Wu, Q. Li, S. Du, F. Huang, L. Liang, H. Zhang, F. Zhuge, H. Cao, Y. Song, Template-free growth of well-ordered silver nano forest/ceramic metamaterial films with tunable optical responses. Adv. Mater. 29, 1605324 (2017)

    Google Scholar 

  19. Z. Shi, R. Fan, Z. Zhang, L. Qian, M. Gao, M. Zhang, L. Zheng, X. Zhang, L. Yin, Random composites of nickel networks supported by porous alumina toward double negative materials. Adv. Mater. 24, 2349–2352 (2012)

    CAS  Google Scholar 

  20. B. Li, G. Sui, W. Zhong, Single negative metamaterials in unstructured polymer nanocomposites toward selectable and controllable negative permittivity. Adv. Mater. 21, 4176–4180 (2009)

    CAS  Google Scholar 

  21. C. Cheng, R. Fan, Z. Wang, Q. Shao, X. Guo, P. Xie, Y. Yin, Y. Zhang, L. An, Y. Lei, J. Ryu, A. Shankar, Z. Guo, Tunable and weakly negative permittivity in carbon/silicon nitride composites with different carbonizing temperatures. Carbon 125, 103–112 (2017)

    CAS  Google Scholar 

  22. Y. Jiang, P. Xie, Z. Wang, G. Fan, Y. Qu, K. Sun, H. Man, Z. Zhang, Y. Liu, R. Fan, Iron granular percolative composites toward radio-frequency negative permittivity. ECS J. Solid State Sci. Technol. 7, N132–N136 (2018)

    CAS  Google Scholar 

  23. K. Sun, R. Fan, Z. Zhang, K. Yan, X. Zhang, P. Xie, M. Yu, S. Pan, The tunable negative permittivity and negative permeability of percolative Fe/Al2O3 composites in radio frequency range. J. Mater. Chem. C 106, 172902 (2015)

    Google Scholar 

  24. T. Tsutaoka, T. Kasagi, S. Yamamoto, K. Hatakeyama, Low frequency plasmonic state and negative permittivity spectra of coagulated Cu granular composite materials in the percolation threshold. Appl. Phys. Lett. 102, 181904 (2013)

    Google Scholar 

  25. X. Wang, Z. Shi, M. Chen, R. Fan, K. Yan, K. Sun, S. Pan, M. Yu, Tunable electromagnetic properties in Co/Al2O3 cermets prepared by wet chemical method. J. Am. Ceram. Soc. 97, 3223–3229 (2014)

    CAS  Google Scholar 

  26. Z. Wang, P. Xie, G. Fan, Z. Zhang, Y. Liu, Q. Gu, R. Fan, Epsilon-negative behavior of BaTiO3/Ag metacomposites prepared by an in situ synthesis. Ceram. Int. 46, 9342–9346 (2020)

    CAS  Google Scholar 

  27. P. Xie, Y. Li, Q. Hou, K. Sui, C. Liu, X. Fu, J. Zhang, V. Murugadoss, J. Fan, Y. Wang, R. Fan, Z. Guo, Tunneling-induced negative permittivity in Ni/MnO nanocomposites by a bio-gel derived strategy. J. Mater. Chem. C 8, 3029–3039 (2020)

    CAS  Google Scholar 

  28. H. Luo, J. Qiu, Carbon nanotubes / epoxy resin metacomposites with adjustable radio-frequency negative permittivity and low dielectric loss. Ceram. Int. 45, 843–848 (2019)

    CAS  Google Scholar 

  29. Y. Zhou, P. Wang, G. Ruan, P. Xu, Y. Ding, Synergistic effect of P[MPEGMA-IL] modified graphene on morphology and dielectric properties of PLA/PCL blends. ES Mater. Manuf. 11, 20–29 (2021)

    CAS  Google Scholar 

  30. P. Xie, Z. Wang, Z. Zhang, R. Fan, C. Cheng, H. Liu, Y. Liu, T. Li, C. Yan, N. Wang, Z. Guo, Silica microsphere templated self-assembly of a three-dimensional carbon network with stable radio-frequency negative permittivity and low dielectric loss. J. Mater. Chem. C 6, 5239–5249 (2018)

    CAS  Google Scholar 

  31. T. Haldar, U. Kumar, B. Yadav, V. Kumar, Tunable negative permittivity of Bi2O3–SiO2/MWCNT glass-nanocomposites at radio frequency region. J. Mater. Sci. Mater. Electron. 31, 11791–11800 (2020)

    CAS  Google Scholar 

  32. C. Hou, G. Fan, X. Xie, X. Zhang, X. Sun, Y. Zhang, B. Wang, W. Du, R. Fan, TiN/Al2O3 binary ceramics for negative permittivity metacomposites at kHz frequencies. J. Alloys Compd. 855, 157499 (2021)

    CAS  Google Scholar 

  33. Y. Qu, G. Fan, D. Liu, Y. Gao, C. Xu, J. Zhong, P. Xie, Y. Liu, Y. Wu, R. Fan, Functional nano-units prepared by electrostatic self-assembly for three-dimension carbon networks hosted in CaCu3Ti4O12 ceramics towards radio-frequency negative permittivity. J. Alloys Compd. 743, 618–625 (2018)

    CAS  Google Scholar 

  34. Q. Hou, K. Yan, R. Fan, Z. Zhang, M. Chen, K. Sun, C. Cheng, Experimental realization of tunable negative permittivity in percolative Fe78Si9B13/epoxy composites. RSC Adv. 5, 9472–9475 (2015)

    CAS  Google Scholar 

  35. K. Sun, Z. Wang, J. Xin, Z. Wang, P. Xie, G. Fan, V. Murugadoss, R. Fan, J. Fan, Z. Guo, Hydrosoluble graphene/polyvinyl alcohol membranous composites with negative permittivity behavior. Macromol. Mater. Eng. 305, 1900709 (2020)

    CAS  Google Scholar 

  36. Z. Wang, P. Xie, C. Cheng, G. Fan, Z. Zhang, R. Fan, X. Yin, Regulation mechanism of negative permittivity in poly(p-phenylene sulfide)/multiwall carbon nanotubes composites. Synth. Met. 244, 15–19 (2018)

    CAS  Google Scholar 

  37. E. Dai, G. Li, G. Lu, W. Wang, Z. Han, Z. Song, Q. Zhang, H. Yuan, X. Zhang, Tribological behavior and wear mechanism of Cu/CF/phenolic resin sandwich composites under current. J. Ind. Text. (2020). https://doi.org/10.1177/1528083720966697

    Article  Google Scholar 

  38. Z. Shi, R. Fan, K. Yan, K. Sun, M. Zhang, C. Wang, X. Liu, X. Zhang, Preparation of iron networks hosted in porous alumina with tunable negative permittivity and permeability. Adv. Funct. Mater. 23, 4123–4132 (2013)

    CAS  Google Scholar 

  39. Y. Liu, C. Xu, H. Ren, Z. Wei, Z. Zhang, Tailorable negative permittivity in Fe/BaTiO3 meta-composites. Funct. Mater. Lett. 13, 2050017 (2020)

    CAS  Google Scholar 

  40. M.V. Singh, Conversions of waste tube-tyres (WTT) and waste polypropylene (WPP) into diesel fuel through catalytic pyrolysis using base SrCO3. Eng. Sci. 13, 87–97 (2021)

    CAS  Google Scholar 

  41. W. Zou, J. Huang, W. Zeng, X. Lu, Effect of ethylene-butylacrylate-glycidyl methacrylate on compatibility properties of poly (butylene terephthalate)/ thermoplastic polyurethane blends. ES Energy Environ. 9, 67–73 (2020)

    CAS  Google Scholar 

  42. L. Mu, Y. Dong, L. Li, X. Gu, Y. Shi, Achieving high value utilization of bio-oil from lignin targeting for advanced lubrication. ES Mater. Manuf. 11, 72–80 (2021)

    CAS  Google Scholar 

  43. J. Li, P. Zhang, H. He, S. Zhai, Y. Xian, W. Ma, L. Wang, Enhanced thermal transport properties of epoxy resin thermal interface materials. ES Energy Environ. 4, 41–47 (2019)

    Google Scholar 

  44. K. Shi, Y. Shen, Y. Zhang, T. Wang, A modified imidazole as a novel latent curing agent with toughening effect for epoxy. Eng. Sci. 5, 66–72 (2019)

    Google Scholar 

  45. X. Jing, J. Wei, Y. Liu, B. Song, Y. Liu, Deployment analysis of aramid fiber reinforced shape-memory epoxy resin composites. Eng. Sci. 11, 44–53 (2020)

    CAS  Google Scholar 

  46. P. Feng, L. Ma, G. Wu, X. Li, M. Zhao, L. Shi, M. Wang, X. Wang, G. Song, Establishment of multistage gradient modulus intermediate layer between fiber and matrix via designing double “rigid-flexible” structure to improve interfacial and mechanical properties of carbon fiber/resin composites. Compos. Sci. Technol. 200, 108336 (2020)

    CAS  Google Scholar 

  47. Y. He, Q. Chen, S. Yang, C. Lu, M. Feng, Y. Jiang, G. Cao, J. Zhang, C. Liu, Micro-crack behavior of carbon fiber reinforced Fe3O4/graphene oxide modified epoxy composites for cryogenic application. Compos. Part A 108, 12–22 (2018)

    CAS  Google Scholar 

  48. D. Pan, Q. Li, W. Zhang, J. Dong, F. Su, V. Murugadoss, Y. Liu, C. Liu, N. Naik, Z. Guo, Highly thermal conductive epoxy nanocomposites filled with 3D BN/C spatial network prepared by salt template assisted method. Compos. B 209, 108609 (2021)

    CAS  Google Scholar 

  49. L. Shi, G. Song, P. Li, X. Li, D. Pan, Y. Huang, L. Ma, Z. Guo, Enhancing interfacial performance of epoxy resin composites via in-situ nucleophilic addition polymerization modification of carbon fibers with hyperbranched polyimidazole. Compos. Sci. Technol. 201, 108522 (2021)

    CAS  Google Scholar 

  50. J. Ni, R. Zhan, J. Qiu, Constructing honeycomb conductive rings in graphene foam/epoxy resin metacomposites for adjustable negative permittivity, low dielectric loss tangent and mechanical enhancement. Org. Electron. 82, 105706 (2020)

    CAS  Google Scholar 

  51. Q. Jiang, Y. Lei, P. Xie, K. Sun, X. Li, S. Qu, Q. Hou, R. Fan, Reverse design of negative permittivity property in nickel-network/epoxy composites. Mater. Lett. 248, 177–180 (2019)

    CAS  Google Scholar 

  52. C. Cheng, R. Fan, Y. Ren, T. Ding, L. Qian, J. Guo, X. Li, L. An, Y. Lei, Y. Yin, Z. Guo, Radio frequency negative permittivity in random carbon nanotubes/alumina nanocomposites. Nanoscale 9, 5779–5787 (2017)

    CAS  Google Scholar 

  53. P. Xie, Z. Wang, K. Sun, C. Cheng, Y. Liu, R. Fan, Regulation mechanism of negative permittivity in percolating composites via building blocks. Appl. Phys. Lett. 111, 112903 (2017)

    Google Scholar 

  54. P. Xie, Z. Zhang, Z. Wang, K. Sun, R. Fan, Targeted double negative properties in silver/silica random metamaterials by precise control of microstructures. Research 2019, 1–11 (2019)

    Google Scholar 

  55. H. Gu, J. Guo, M. Khan, D. Young, T. Shen, S. Wei, Z. Guo, Magnetoresistive polyaniline–silicon carbide metacomposites: plasma frequency determination and high magnetic field sensitivity. Phys. Chem. Chem. Phys. 18, 19536–19543 (2016)

    CAS  Google Scholar 

  56. C. Nan, Y. Shen, J. Ma, Physical properties of composites near percolation. Annu. Rev. Mater. Sci. 40, 131–151 (2010)

    CAS  Google Scholar 

  57. H. Wu, Z. Mu, G. Qi, Y. Zhang, X. Wang, P. Xie, N. Wu, H. Yuan, K. Sui, R. Fan, C. Liu, Negative permittivity behavior in Ti3AlC2-polyimide composites and the regulation mechanism. J. Mater. Sci. Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-05695-y

    Article  Google Scholar 

  58. Z. Shi, S. Chen, R. Fan, X. Wang, X. Wang, Z. Zhang, K. Sun, Ultra low percolation threshold and significantly enhanced permittivity in porous metal–ceramic composites. J. Mater. Chem. C 2, 6752–6757 (2014)

    CAS  Google Scholar 

  59. Z. Shi, R. Fan, Z. Zhang, H. Gong, J. Ouyang, Y. Bai, X. Zhang, L. Yin, Experimental and theoretical investigation on the high frequency dielectric properties of Ag/Al2O3 composites. Appl. Phys. Lett. 99, 032903 (2011)

    Google Scholar 

  60. Z. Shi, R. Fan, X. Wang, Z. Zhang, L. Qian, L. Yin, Y. Bai, Radio-frequency permeability and permittivity spectra of copper/yttrium iron garnet cermet prepared at low temperatures. J. Eur. Ceram. Soc. 35, 1219–1225 (2015)

    CAS  Google Scholar 

  61. P. Mantas, Dielectric response of materials: extension to the Debye model. J. Eur. Ceram. Soc. 19, 2079–2086 (1999)

    CAS  Google Scholar 

  62. K. Sun, R. Fan, Z. Zhang, K. Yan, X. Zhang, P. Xie, M. Yu, S. Pan, The tunable negative permittivity and negative permeability of percolative Fe/Al2O3 composites in radio frequency range. Appl. Phys. Lett. 106, 172902 (2015)

    Google Scholar 

  63. K. Lee, S. Cho, S. Heum-Park, A. Heeger, C. Lee, S. Lee, Metallic transport in polyaniline. Nature 441, 65–68 (2006)

    CAS  Google Scholar 

  64. P. Xie, H. Li, B. He, F. Dang, J. Lin, R. Fan, C. Hou, H. Liu, J. Zhang, Y. Ma, Z. Guo, Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption. J. Mater. Chem. C 6, 8812–8822 (2018)

    CAS  Google Scholar 

  65. P. Xie, Y. Liu, M. Feng, M. Niu, C. Liu, N. Wu, K. Sui, R.R. Patil, D. Pan, Z. Guo, R. Fan, Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv. Compos. Hybrid Mater. 4, 173–185 (2021)

    CAS  Google Scholar 

  66. Y. Zhao, Z. Yang, W. Fan, Y. Wang, G. Li, H. Cong, H. Yuan, Carbon nanotube/carbon fiber electrodes via chemical vapor deposition for simultaneous determination of ascorbic acid, dopamine and uric acid. Arab. J. Chem. 13, 3266–3275 (2020)

    CAS  Google Scholar 

  67. J. Zeng, P. Qi, Y. Wang, Y. Liu, K. Sui, Electrostatic assembly construction of polysaccharide functionalized hybrid membrane for enhanced antimony removal. J. Hazard. Mater. 410, 124633 (2021)

    CAS  Google Scholar 

  68. C. Hou, W. Yang, X. Xie, X. Sun, J. Wang, N. Naik, D. Pan, X. Mai, Z. Guo, F. Dang, W. Du, Agaric-like anodes of porous carbon decorated with MoO2 nanoparticles for stable ultralong cycling lifespan and high-rate lithium/sodium storage. J. Colloid Interface Sci. 596, 396–407 (2021)

    CAS  Google Scholar 

  69. Y. Zhou, S. Wu, Y. Ma, H. Zhang, X. Zeng, F. Wu, F. Liu, J.E. Ryu, Z. Guo, Recent advances in organic/composite phase change materials for energy storage. ES Energy Environ. 9, 28–40 (2020)

    CAS  Google Scholar 

  70. G. Liu, G. Yao, J. Xu, X. Yan, Spatial decoupling of light absorption and scattering centers in plasmon-assisted bubble column evaporator for solar steam generation. ES Energy Environ. 9, 41–49 (2020)

    CAS  Google Scholar 

  71. W. Fan, C. Shan, H. Guo, J. Sang, R. Wang, R. Zheng, K. Sui, Z. Nie, Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials. Sci. Adv. 5, 7174 (2019)

    Google Scholar 

  72. H. Wang, C. Zhang, Z. Zhang, B. Zhou, J. Shen, A. Du, Biomimetic ultra-black sponge derived from Loofah and Co-MOF for long-term solar-powered vapor generation and desalination. Sol. RRL 33, 2000817 (2021)

    Google Scholar 

  73. X. Lv, Y. Tang, Q. Tian, Y. Wang, T. Ding, Ultra-stretchable membrane with high electrical and thermal conductivity via electrospinning and in-situ nanosilver deposition. Compos. Sci. Technol. 200, 108414 (2020)

    CAS  Google Scholar 

  74. N. Wu, Q. Hu, R. Wei, X. Mai, N. Naik, D. Pan, Z. Guo, Z. Shi, Review on the electromagnetic interference shielding properties of carbon based materials and their novel composites: recent progress, challenges and prospects. Carbon 176, 88–105 (2021)

    CAS  Google Scholar 

  75. X. Ji, H. Wang, T. Chen, T. Zhang, J. Chu, A. Du, Intrinsic negative TCR of superblack carbon aerogel films and their ultrabroad band response from UV to microwave. Carbon 161, 590–598 (2020)

    CAS  Google Scholar 

  76. Y. Xi, Y. Bin, C. Chiang, M. Matsuo, Dielectric effects on positive temperature coefficient composites of polyethylene and short carbon fibers. Carbon 45, 1302–1309 (2007)

    CAS  Google Scholar 

  77. P. Xie, W. Sun, A. Du, Q. Hou, G. Wu, R. Fan, Epsilon-negative carbon aerogels with state transition from dielectric to degenerate semiconductor. Adv. Electron. Mater. 7, 2000877 (2021)

    CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the financial support from Key Research and Development Project of Shandong Province [Grant No. 2019GSF109079], Natural Science Foundation of Shandong Province [ZR2020QE006], Postdoctoral Applied Research Project of Qingdao, the China Postdoctoral Science Foundation [2020M671992], Postdoctoral Innovation Project of Shandong Province [202003031], the National Natural Science Foundation of China [Grant No. 52072193], and support by State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by ML and PX. ML wrote the manuscript. CL, HY, KS gave the meaningful advice in theoretical analysis and wrote the manuscript. PX, CL, HY and RF gave financial support and measurement support for this work. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Peitao Xie, Hua Yuan or Chunzhao Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Lan, X., Zhang, H. et al. Iron/epoxy random metamaterials with adjustable epsilon-near-zero and epsilon-negative property. J Mater Sci: Mater Electron 32, 15995–16007 (2021). https://doi.org/10.1007/s10854-021-06150-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06150-8

Navigation