Skip to main content

Advertisement

Log in

Controlled-synthesis of hierarchical NiCo2O4 anchored on carbon nanofibers mat for free-standing and highly-performance supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, a versatile one-step hydrothermal technique was used to produce a hybrid standalone electrode of NiCo2O4 hierarchical nanostructures anchored on CNFs mat for highly-performance and substrate-free supercapacitors. The CNFs mat was working as a conductive and a three-dimensional template for the deposition of the hierarchical NiCo2O4 nanostructures at the same time. The morphological and structural data analysis revealed a pure spinel NiCo2O4 nanostructures with a unique surface morphology comprising interconnected ultrathin nanoneedles and nanoflowers were successfully anchored to the CNFs mat. Real supercapacitors consist of two-symmetrical hybrid electrodes with different NiCo2O4 loading ratios were assembled and tested. The electrochemical performances of the assembled devices in terms of specific capacitance, energy, and power densities were systematically evaluated. Increasing the NiCo2O4 loading on the CNFs mat had shown a positive impact on improving the overall electrochemical performance of the assembled supercapacitors. A hybrid electrode loaded with NiCo2O4 twice as much as CNFs possess a specific capacitance value of 540 F g−1 along with an energy density of 30 Wh kg−1 at a power density of 515.6 W kg−1. In addition, the device showed excellent cycling stability and high capacitance retention against 6000 charge–discharge cycles at a charging current of 1.0 A g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Jost, D. Stenger, C.R. Perez, J.K. McDonough, K. Lian, Y. Gogotsi, G. Dion, Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics. Energy Environ. Sci. 6, 2698–2705 (2013). https://doi.org/10.1039/c3ee40515j

    Article  CAS  Google Scholar 

  2. S.A.N. Tembei, A.M.R.F. El-Bab, A. Hessein, A.A. El-Moneim, Ultrasonic doping and photo-reduction of graphene oxide films for flexible and high-performance electrothermal heaters. FlatChem. (2020). https://doi.org/10.1016/j.flatc.2020.100199

    Article  Google Scholar 

  3. P. Veerakumar, A. Sangili, S. Manavalan, P. Thanasekaran, K.C. Lin, Research progress on porous carbon supported metal/metal oxide nanomaterials for supercapacitor electrode applications. Ind. Eng. Chem. Res. 59, 6347–6374 (2020). https://doi.org/10.1021/acs.iecr.9b06010

    Article  CAS  Google Scholar 

  4. S. Zhang, N. Pan, Supercapacitors performance evaluation. Adv. Energy Mater. 5, 1–19 (2015). https://doi.org/10.1002/aenm.201401401

    Article  CAS  Google Scholar 

  5. T. Chen, L. Dai, Flexible supercapacitors based on carbon nanomaterials. J. Mater. Chem. A. 2, 10756–10775 (2014). https://doi.org/10.1039/c4ta00567h

    Article  CAS  Google Scholar 

  6. Y. Qiu, G. Li, Y. Hou, Z. Pan, H. Li, W. Li, M. Liu, F. Ye, X. Yang, Y. Zhang, Vertically aligned carbon nanotubes on carbon nanofibers: a hierarchical three-dimensional carbon nanostructure for high-energy flexible supercapacitors. Chem. Mater. 27, 1194–1200 (2015). https://doi.org/10.1021/cm503784x

    Article  CAS  Google Scholar 

  7. D. Ma, J. Cai, X. Wu, H. Xu, Y. Tian, H. Zhao, Treatment of multiwall carbon nanotubes based on the modified Hummers method for supercapacitor electrode materials. J. Renew. Sustain. Energy. (2016). https://doi.org/10.1063/1.4941856

    Article  Google Scholar 

  8. E. Ghoniem, S. Mori, A. Abdel-Moniem, Low-cost flexible supercapacitors based on laser reduced graphene oxide supported on polyethylene terephthalate substrate. J. Power Sources. 324, 272–281 (2016). https://doi.org/10.1016/j.jpowsour.2016.05.069

    Article  CAS  Google Scholar 

  9. A.A. El-Moneim, A.E. Rashed, Two steps synthesis approach of MnO2/graphene nanoplates/graphite composite electrode for supercapacitor application. Mater. Today Energy. 3, 24–31 (2017). https://doi.org/10.1016/j.mtener.2017.02.004

    Article  Google Scholar 

  10. B. Liu, L. Liu, Y. Yu, Y. Zhang, A. Chen, Synthesis of mesoporous carbon with tunable pore size for supercapacitors. New J. Chem. 44, 1036–1044 (2020). https://doi.org/10.1039/c9nj05085j

    Article  CAS  Google Scholar 

  11. M.H. El-Shafei, E. Ghoniem, A.H. Hassanin, A.A. El-Moneim, Novel technique for producing porous carbon nanofiber mate for supercapacitors application. Trans. Technol. Publ. (2017). https://doi.org/10.4028/www.scientific.net/KEM.735.199

    Article  Google Scholar 

  12. Z. Wu, Y. Zhu, X. Ji, NiCo2O4-based materials for electrochemical supercapacitors. J. Mater. Chem. A. 2, 14759–14772 (2014). https://doi.org/10.1039/c4ta02390k

    Article  CAS  Google Scholar 

  13. H. Ma, Z. Liu, X. Wang, C. Zhang, R. Jiang, Supercapacitive performance of porous carbon materials derived from tree leaves. J. Renew. Sustain. Energy. (2017). https://doi.org/10.1063/1.4997019

    Article  Google Scholar 

  14. J. Ma, Q. Guo, H.L. Gao, X. Qin, Synthesis of C60/Graphene composite as electrode in supercapacitors, Fullerenes Nanotub. Carbon Nanostruct. 23, 477–482 (2015). https://doi.org/10.1080/1536383X.2013.865604

    Article  CAS  Google Scholar 

  15. S. Vijayakumar, S. Nagamuthu, G. Muralidharan, Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl. Mater. Interfaces. 5, 2188–2196 (2013). https://doi.org/10.1021/am400012h

    Article  CAS  Google Scholar 

  16. D. Majumdar, T. Maiyalagan, Z. Jiang, Recent progress in ruthenium oxide-based composites for supercapacitor applications. ChemElectroChem 6, 4343–4372 (2019). https://doi.org/10.1002/celc.201900668

    Article  CAS  Google Scholar 

  17. M. Huang, F. Li, F. Dong, Y.X. Zhang, L.L. Zhang, MnO2-based nanostructures for high-performance supercapacitors. J. Mater. Chem. A. 3, 21380–21423 (2015). https://doi.org/10.1039/c5ta05523g

    Article  CAS  Google Scholar 

  18. C. Rong, S. Chen, J. Han, K. Zhang, D. Wang, X. Mi, X. Wei, Hybrid supercapacitors integrated rice husk based activated carbon with LiMn2O4. J. Renew. Sustain. Energy. (2015). https://doi.org/10.1063/1.4913965

    Article  Google Scholar 

  19. L. Li, Z.Y. Qin, L.F. Wang, H.J. Liu, M.F. Zhu, Anchoring alpha-manganese oxide nanocrystallites on multi-walled carbon nanotubes as electrode materials for supercapacitor. J. Nanoparticle Res. 12, 2349–2353 (2010). https://doi.org/10.1007/s11051-010-9980-8

    Article  CAS  Google Scholar 

  20. B. Ren, M. Fan, Q. Liu, J. Wang, D. Song, X. Bai, Hollow NiO nanofibers modified by citric acid and the performances as supercapacitor electrode. Electrochim. Acta. 92, 197–204 (2013). https://doi.org/10.1016/j.electacta.2013.01.009

    Article  CAS  Google Scholar 

  21. F. Manteghi, S.H. Kazemi, M. Peyvandipour, A. Asghari, Preparation and application of cobalt oxide nanostructures as electrode materials for electrochemical supercapacitors. RSC Adv. 5, 76458–76463 (2015). https://doi.org/10.1039/c5ra09060a

    Article  CAS  Google Scholar 

  22. L. Gao, S. Xu, C. Xue, Z. Hai, D. Sun, Y. Lu, Self-assembly of hierarchical 3D starfish-like Co3O4 nanowire bundles on nickel foam for high-performance supercapacitor. J. Nanoparticle Res. 18, 1–10 (2016). https://doi.org/10.1007/s11051-016-3419-9

    Article  CAS  Google Scholar 

  23. B.J. Lee, S.R. Sivakkumar, J.M. Ko, J.H. Kim, S.M. Jo, D.Y. Kim, Carbon nanofibre/hydrous RuO2 nanocomposite electrodes for supercapacitors. J. Power Sources. 168, 546–552 (2007). https://doi.org/10.1016/j.jpowsour.2007.02.076

    Article  CAS  Google Scholar 

  24. A.A. El-Moneim, E. Akiyama, K.M. Ismail, K. Hashimoto, Corrosion behaviour of sputter-deposited Mg-Zr alloys in a borate buffer solution. Corros. Sci. 53, 2988–2993 (2011). https://doi.org/10.1016/j.corsci.2011.05.043

    Article  CAS  Google Scholar 

  25. K.M. El-Khatib, M.O.A. Helal, A.A. El-Moneim, H. Tawfik, Corrosion stability of SUS316L HVOF sprayed coatings as lightweight bipolar plate materials in PEM fuel cells. Anti-Corr. Methods Mater. 51, 136–142 (2004). https://doi.org/10.1108/00035590410523238

    Article  CAS  Google Scholar 

  26. M. Gamil, O. Tabata, K. Nakamura, A.M.R.F. El-Bab, A.A. El-Moneim, Investigation of a new high sensitive micro-electromechanical strain gauge sensor based on graphene piezoresistivity. Key Eng. Mater. 605, 207–210 (2014). https://doi.org/10.4028/www.scientific.net/KEM.605.207

    Article  Google Scholar 

  27. L. Yang, S. Cheng, Y. Ding, X. Zhu, Z.L. Wang, M. Liu, Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors. Nano Lett. 12, 321–325 (2012). https://doi.org/10.1021/nl203600x

    Article  CAS  Google Scholar 

  28. S. Jeon, J.H. Jeong, H. Yoo, H.K. Yu, B.H. Kim, M.H. Kim, RuO2 nanorods on electrospun carbon nanofibers for supercapacitors. ACS Appl. Nano Mater. 3, 3847–3858 (2020). https://doi.org/10.1021/acsanm.0c00579

    Article  CAS  Google Scholar 

  29. W. Luo, H. Xue, The synthesis and electrochemical performance of NiCo 2 O 4 embedded carbon nanofibers for high-performance supercapacitors, Fullerenes Nanotub. Carbon Nanostruct. 27, 189–197 (2019). https://doi.org/10.1080/1536383X.2018.1538131

    Article  CAS  Google Scholar 

  30. J. Du, G. Zhou, H. Zhang, C. Cheng, J. Ma, W. Wei, L. Chen, T. Wang, Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high-performance supercapacitors. ACS Appl. Mater. Interfaces. 5, 7405–7409 (2013). https://doi.org/10.1021/am4017335

    Article  CAS  Google Scholar 

  31. F. Deng, L. Yu, G. Cheng, T. Lin, M. Sun, F. Ye, Y. Li, Synthesis of ultrathin mesoporous NiCo2O4 nanosheets on carbon fiber paper as integrated high-performance electrodes for supercapacitors. J. Power Sources. 251, 202–207 (2014). https://doi.org/10.1016/j.jpowsour.2013.11.048

    Article  CAS  Google Scholar 

  32. M.H. El-Shafei, A. Hassanin, N. Shaalan, T. Sharshar, A. Abdelmoneim, Free-standing interconnected carbon nanofibers electrodes: new structural designs for supercapacitor application. Nanotechnology (2020). https://doi.org/10.1088/1361-6528/ab6d22

    Article  Google Scholar 

  33. A.G. El-Deen, A.G. El-Deen, M.H. El-Shafei, M.H. El-Shafei, A. Hessein, A. Hessein, A.H. Hassanin, N.M. Shaalan, N.M. Shaalan, A.A. El-Moneim, A.A. El-Moneim, A.A. El-Moneim, High-performance asymmetric supercapacitor based hierarchical NiCo2O4@ carbon nanofibers//activated multichannel carbon nanofibers. Nanotechnology (2020). https://doi.org/10.1088/1361-6528/ab97d6

    Article  Google Scholar 

  34. D. Dastan, Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol–gel. Appl. Phys. A Mater. Sci. Process. (2017). https://doi.org/10.1007/s00339-017-1309-3

    Article  Google Scholar 

  35. P. Yin, Z. Shi, L. Sun, P. Xie, D. Dastan, K. Sun, R. Fan, Improved breakdown strengths and energy storage properties of polyimide composites: The effect of internal interfaces of C/SiO2 hybrid nanoparticles. Polym. Compos. (2021). https://doi.org/10.1002/pc.26034

    Article  Google Scholar 

  36. D. Dastan, S.W. Gosavi, N.B. Chaure, Studies on electrical properties of hybrid polymeric gate dielectrics for field effect transistors. Macromol. Symp. 347, 81–86 (2015). https://doi.org/10.1002/masy.201400042

    Article  CAS  Google Scholar 

  37. M. Asadzadeh, F. Tajabadi, D. Dastan, P. Sangpour, Z. Shi, N. Taghavinia, Facile deposition of porous fluorine doped tin oxide by Dr. Blade method for capacitive applications. Ceram. Int. 47, 5487–5494 (2021). https://doi.org/10.1016/j.ceramint.2020.10.131

    Article  CAS  Google Scholar 

  38. K. Shan, F. Zhai, Z.Z. Yi, X.T. Yin, D. Dastan, F. Tajabadi, A. Jafari, S. Abbasi, Mixed conductivity and the conduction mechanism of the orthorhombic CaZrO3 based materials. Surfaces and Interfaces. (2021). https://doi.org/10.1016/j.surfin.2020.100905

    Article  Google Scholar 

  39. Y. Xu, L. Wang, P. Cao, C. Cai, Y. Fu, X. Ma, Mesoporous composite nickel cobalt oxide/graphene oxide synthesized via a template-assistant co-precipitation route as electrode material for supercapacitors. J. Power Sources. 306, 742–752 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.106

    Article  CAS  Google Scholar 

  40. M. Adel, R. Abdel-Karim, A. Abdelmoneim, Studying the conversion of graphite into nanographene sheets using supercritical phase exfoliation method, Fullerenes Nanotub. Carbon Nanostruct. 28, 589–602 (2020). https://doi.org/10.1080/1536383X.2020.1725747

    Article  CAS  Google Scholar 

  41. J. Hu, M. Li, F. Lv, M. Yang, P. Tao, Y. Tang, H. Liu, Z. Lu, Heterogeneous NiCo2O4@polypyrrole core/sheath nanowire arrays on Ni foam for high performance supercapacitors. J. Power Sources. 294, 120–127 (2015). https://doi.org/10.1016/j.jpowsour.2015.06.049

    Article  CAS  Google Scholar 

  42. G. Zhang, X.W.D. Lou, Controlled growth of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers for high-performance supercapacitors. Sci. Rep. 3, 2–7 (2013). https://doi.org/10.1038/srep01470

    Article  CAS  Google Scholar 

  43. J. Shen, X. Li, N. Li, M. Ye, Facile synthesis of NiCo2O4-reduced graphene oxide nanocomposites with improved electrochemical properties. Electrochim. Acta. 141, 126–133 (2014). https://doi.org/10.1016/j.electacta.2014.07.063

    Article  CAS  Google Scholar 

  44. N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung, J. Thomas, Asymmetric supercapacitor electrodes and devices. Adv. Mater. (2017). https://doi.org/10.1002/adma.201605336

    Article  Google Scholar 

  45. M. Stöber, C. Cherkouk, T. Leisegang, M. Schelter, J. Zosel, J. Walter, J. Hanzig, M. Zschornak, S. Prucnal, R. Böttger, D.C. Meyer, Oxygen exchange kinetics of SrTiO3 single crystals: a non-destructive, quantitative method. Cryst. Res. Technol. 53, 1–7 (2018). https://doi.org/10.1002/crat.201800004

    Article  CAS  Google Scholar 

  46. A.A. El-Moneim, E. Akiyama, H. Habazaki, A. Kawashima, K. Asami, K. Hashimoto, XPS and electrochemical studies on the corrosion behaviour of sputter-deposited amorphous Mn-Nb alloys in a neutral chloride solution. Corros. Sci. 40, 1513–1531 (1998). https://doi.org/10.1016/S0010-938X(98)00064-X

    Article  CAS  Google Scholar 

  47. N. Haghnegahdar, M.A. Tarighat, D. Dastan, Curcumin-functionalized nanocomposite AgNPs/SDS/MWCNTs for electrocatalytic simultaneous determination of dopamine, uric acid, and guanine in co-existence of ascorbic acid by glassy carbon electrode. J. Mater. Sci. 32, 5602–5613 (2021). https://doi.org/10.1007/s10854-021-05282-1

    Article  CAS  Google Scholar 

  48. V.S. Kumbhar, W. Lee, K. Lee, Self-assembly of NiMoO4 nanoparticles on the ordered NiCo2O4 ultra-thin nanoflakes core-shell electrode for high energy density supercapacitors and efficient oxygen evolution reaction. Ceram. Int. 46, 22837–22845 (2020). https://doi.org/10.1016/j.ceramint.2020.06.052

    Article  CAS  Google Scholar 

  49. S. Khalid, C. Cao, L. Wang, Y. Zhu, Microwave assisted synthesis of porous NiCo2O4 microspheres: application as high performance asymmetric and symmetric supercapacitors with large areal capacitance. Sci. Rep. 6, 1–13 (2016). https://doi.org/10.1038/srep22699

    Article  CAS  Google Scholar 

  50. G. He, L. Wang, H. Chen, X. Sun, X. Wang, Preparation and performance of NiCo2O4 nanowires-loaded graphene as supercapacitor material. Mater. Lett. 98, 164–167 (2013). https://doi.org/10.1016/j.matlet.2013.02.035

    Article  CAS  Google Scholar 

  51. N. Wang, M. Yao, P. Zhao, Q. Zhang, W. Hu, Highly mesoporous structure nickel cobalt oxides with an ultra-high specific surface area for supercapacitor electrode materials. J. Solid State Electrochem. 20, 1429–1434 (2016). https://doi.org/10.1007/s10008-016-3149-z

    Article  CAS  Google Scholar 

  52. X. Wang, C. Yan, A. Sumboja, P.S. Lee, High performance porous nickel cobalt oxide nanowires for asymmetric supercapacitor. Nano Energy 3, 119–126 (2014). https://doi.org/10.1016/j.nanoen.2013.11.001

    Article  CAS  Google Scholar 

  53. V. Veeramani, R. Madhu, S.M. Chen, M. Sivakumar, Flower-like nickel-cobalt oxide decorated dopamine-derived carbon nanocomposite for high performance supercapacitor applications. ACS Sustain. Chem. Eng. 4, 5013–5020 (2016). https://doi.org/10.1021/acssuschemeng.6b01391

    Article  CAS  Google Scholar 

  54. H. Xu, J.X. Wu, Y. Chen, J.L. Zhang, B.Q. Zhang, Facile synthesis of polyaniline/NiCo2O4 nanocomposites with enhanced electrochemical properties for supercapacitors. Ionics (Kiel). 21, 2615–2622 (2015). https://doi.org/10.1007/s11581-015-1441-z

    Article  CAS  Google Scholar 

  55. N. Padmanathan, S. Selladurai, Controlled growth of spinel NiCo2O4 nanostructures on carbon cloth as a superior electrode for supercapacitors. RSC Adv. 4, 8341–8349 (2014). https://doi.org/10.1039/c3ra46399k

    Article  CAS  Google Scholar 

  56. L. Huang, D. Chen, Y. Ding, S. Feng, Z.L. Wang, M. Liu, Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 13, 3135–3139 (2013). https://doi.org/10.1021/nl401086t

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Missions Sector-Higher Education Ministry, Egypt, for the financial support for this work, and the Materials Science and Engineering Department at E-JUST. This study was also supported by Grants (ID 31306) funded by science and technology development fund (STDF) in Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hussein El-Shafei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8779 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Shafei, M.H., El-Deen, A.G., Abd El-Moneim, A. et al. Controlled-synthesis of hierarchical NiCo2O4 anchored on carbon nanofibers mat for free-standing and highly-performance supercapacitors. J Mater Sci: Mater Electron 32, 15882–15897 (2021). https://doi.org/10.1007/s10854-021-06140-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06140-w

Navigation