Skip to main content
Log in

Growth and study of c-axis-oriented vertically aligned ZnO nanorods on seeded substrate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

ZnO nanorods (NRs) are grown by sonicated sol–gel immersion method at a lower temperature, along c-axis, i.e., normal to the glass substrate spin-coated with seed-layer of zinc oxide. Effects of seed-layer-precursor molarity and immersion time on the structural and morphological properties of NRs have been investigated. These two process parameters affect the diameter and length of the ZnO NRs significantly. The NRs are hexagonal in cross section. The polycrystalline seed-layer with nano-sized grains exhibits high transparency and quick photoresponse. The transmittance decreases after the growth of NRs but improves past annealing. The band gap value of bulk ZnO is tuned up to 190 meV by the growth of NRs and their subsequent annealing. These NRs exhibit green emission and persistent photoconductivity (PPC). The annealing of NRs quenches the green emission and reduces the PPC effect partially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Z.L. Wang, Nanostructures of zinc oxide. Mater. Today 7, 26–33 (2004)

    Article  CAS  Google Scholar 

  2. A. Umar, C. Ribeiro, A. Al-Hajry, Y. Masuda, Y.B. Hahn, Growth of highly c-axis-oriented ZnO nanorods on ZnO/glass substrate: growth mechanism, structural, and optical properties. J. Phys. Chem. C 113, 14715–14720 (2009)

    Article  CAS  Google Scholar 

  3. M. Madel, F. Huber, R. Mueller, B. Amann, M. Dickel, Y. Xie, K. Thonke, Persistent photoconductivity in ZnO nanowires: Influence of oxygen and argon ambient. J. Appl. Phys 121, 124301 (2017)

    Article  Google Scholar 

  4. B. Mondal, L. Dutta, C. Roychaudhury, D. Mohanta, N. Mukherjee, H. Saha, Effect of annealing temperature on the morphology and sensitivity of the zinc oxide nanorods-based methane senor. Acta Metall. Sin. (Engl. Lett.) 27, 593–600 (2014)

    Article  CAS  Google Scholar 

  5. P.S. Kumar, A.D. Raj, D. Mangalaraj, D. Nataraj, Hydrophobic ZnO nanostructured thin films on glass substrate by simple successive ionic layer absorption and reaction (SILAR) method. Thin Solid Films 518, e183–e186 (2010)

    Article  Google Scholar 

  6. P.S. Kumar, A.D. Raj, D. Mangalaraj, D. Nataraj, N. Ponpandian, L. Li, G. Chabrol, Growth of hierarchical based ZnO micro/nanostructured films and their tunable wettability behavior Appl. Surf. Sci. 257, 6678–6686 (2011)

    Article  Google Scholar 

  7. P.S. Kumar, P. Paik, A.D. Raj, D. Mangalaraj, D. Nataraj, A. Gedanken, S. Ramakrishna, Biodegradability study and pH influence on growth and orientation of ZnO nanorods via aqueous solution process. Appl. Surf. Sci. 258, 6765–6771 (2012)

    Article  CAS  Google Scholar 

  8. A. Georgea , A.D. Raja, A.A. Irudayaraj, D.M.A. Raj, J. Arumugam, S. J. Sundaram, J. Kennedy, K. Kaviyarasu, Influence of solvent and precursor concentration on the properties of NiV2O6 nanoparticles, Surf. Interfaces 21, 100711 (2020).

  9. D.-Y. Son, K.-H. Bae, H.-S. Kim, N.-G. Park, Effects of seed-layer on growth of ZnO nanorod and performance of perovskite solar cell. J. Phys. Chem. C 119, 10321–10328 (2015)

    Article  CAS  Google Scholar 

  10. P.F. Azad, N. Naderi, M.J. Eshraghi, A. Massoudi, The effect of seed-layer on optical and structural characteristics of ZnO nanorod arrays deposited by CBD method. J Mater Sci: Mater Electron 28, 15495–15499 (2017)

    Google Scholar 

  11. A. Bramantyo, N.R. Poespawati, M. Kenji, Optimization of ZnO seed-layer for growth of vertically aligned ZnO nanorods on glass surface. JAP Conf. Proc. 4, 011103 (2016)

    Google Scholar 

  12. H. Wang, Z.P. Zhang, X.N. Wang, Q. Mo, Y. Wang, J.H. Zhu, H.B. Wang, F.J. Yang, Y. Jiang, Selective growth of vertical-aligned ZnO nanorod arrays on Si substrate by catalyst-free thermal evaporation. Nanoscale Res. Lett. 3, 309–314 (2008)

    Article  CAS  Google Scholar 

  13. M. Babikier, D. Wang, J. Wang, Q. Li, J. Sun, Y. Yan, Q. Yu, S. Jiao, Cu-doped ZnO nanorod arrays: the effects of copper precursor and concentration. Nanoscale Res. Lett. 9, 199 (2014)

    Article  Google Scholar 

  14. A.H. Kurda, Y.M. Hassan, N.M. Ahmed, Controlling diameter, length and characterization of ZnO nanorods by simple hydrothermal method for solar cells. World J. Nanosci Eng. 5, 34–40 (2015)

    Article  Google Scholar 

  15. A. Pimente, S.H. Ferreira, D. Nunes, T. Calmeiro, R. Martins, E. Fortunato, Microwave synthesized ZnO nanorod arrays for UV sensors: a seed-layer annealing temperature study. Materials 9, 299 (2016)

    Article  Google Scholar 

  16. M.H. Mamat, Z. Khusaimi, M.Z. Musa, M.Z. Sahdan, M. Rusop, Novel synthesis of aligned Zinc oxide nanorods on a glass substrate by sonicated sol–gel immersion. Mater. Lett. 64, 1211–1214 (2010)

    Article  CAS  Google Scholar 

  17. D. Mudusu, K.R. Nandanapalli, S.R. Dugasani, S.H. Park, C.W. Tu, Zinc oxide nanorods shielded with an ultrathin nickel layer: tailoring of physical properties. Sci. Rep. 6, 28561 (2016)

    Article  Google Scholar 

  18. R. Nandi, D. Singh, P. Joshi, R.S. Srinivasa, S.S. Major, Effect of Ga-doped ZnO seed-layer thickness on the morphology and optical properties of ZnO nanorods. AIP Conf. Proc. 1512, 410–411 (2013)

    Article  CAS  Google Scholar 

  19. I. Saurdi, M.H. Mamat, M.F. Malek, M. Rusop, Preparation of aligned ZnO nanorod arrays on Sn-doped ZnO thin films by sonicated sol-gel immersion fabricated for dye-sensitized solar cell. Adv. Mater. Sci. Eng. 2014, 636725 (2014)

    Article  Google Scholar 

  20. Y.T. Yin, W.X. Que, C.H. Kam, ZnO nanorods on ZnO seed-layer derived by sol-gel process. J. Sol-Gel Sci. Technol. 53, 605–612 (2010)

    Article  CAS  Google Scholar 

  21. L.-X. Du, Y. Jiao, S.-Y. Niu, H. Miao, H.-B. Yao, K.-G. Wang, X.-Y. Hu, H.-B. Fan, Control of morphologies and properties of zinc oxide nanorod arrays by slightly adjusting their seed-layers. Nanomater. Nanotechno. 6, 1–8 (2016)

    Article  Google Scholar 

  22. A. Sholehah, A.H. Yuwono, The effects of annealing temperature and seed-layer on the growth of ZnO nanorods in a chemical bath deposition process. Int. J. Technol. 4, 565–572 (2015)

    Article  Google Scholar 

  23. W.-Y. Chang, C.-A. Lin, J.-H. He, T.-B. Wu, Resistive switching behaviors of ZnO nanorod layers. Appl. Phys. Lett. 96, 242109 (2010)

    Article  Google Scholar 

  24. J. Jie, G. Wang, Y. Chen, X. Han, Q. Wang, B. Xu, J.G. Hou, Synthesis and optical properties of well-aligned ZnO nanorod array on an undoped ZnO film. Appl. Phys. Lett. 86, 031909 (2005)

    Article  Google Scholar 

  25. E.G. Barbagiovanni, V. Strano, G. Franzò, I. Crupi, S. Mirabella, Photoluminescence transient study of surface defects in ZnO nanorods grown by chemical bath deposition. Appl. Phys. Lett. 106, 093108 (2015).

  26. X. Xu, C. Xu, Y. Lin, T. Ding, S. Fang, Z. Shi, W. Xia, J. Hu, Surface photoluminescence and magnetism in hydrothermally grown undoped ZnO nanorod arrays. Appl. Phys. Lett. 100, 172401 (2012)

    Article  Google Scholar 

  27. Z.N. Urgessa, O.S. Oluwafemi, E.J. Olivier, J.H. Neethling, J.R. Botha, Synthesis of well-aligned ZnO nanorods on silicon substrate at lower temperature. J. Alloys Compd. 580, 120–124 (2013)

    Article  CAS  Google Scholar 

  28. N.K. Reddya, M. Devika, C.W. Tu, Vertically aligned ZnO nanorods on flexible substrates for multifunctional device applications: Easy and cost-effective route. Mater. Lett. 120, 62–64 (2014)

    Article  Google Scholar 

  29. J. Nayak, J. Kasuya, A. Watanabe, S. Nozaki, Persistent photoconductivity in ZnO nanorods deposited on electro-deposited seed-layers of ZnO. J. Phys. Condens. Matter. 20, 195222 (2008)

    Article  Google Scholar 

  30. Y.-C. Wu, C.-H. Liu, S.-Y. Chen, F.-Y. Shih, P.-H. Ho, C.W. Chen, C.-T. Liang, W.-H. Wang, Extrinsic origin of persistent photoconductivity in monolayer MoS2 field effect transistors. Sci. Rep. 5, 11472 (2015)

    Article  CAS  Google Scholar 

  31. R. Calarco, M. Marso, T. Richter, A.I. Aykanat, R. Meijers, A.V.D. Hart, T. Stoica, H. Luth, Size-dependent photoconductivity in MBE-Grown GaN−Nanowires. Nano Lett. 5, 981–984 (2005)

    Article  CAS  Google Scholar 

  32. H. Yin, A. Akey, R. Jaramillo, Large and persistent photoconductivity due to hole-hole correlation in CdS. Phys. Rev. Mater. 2, 084602 (2018)

    Article  CAS  Google Scholar 

  33. V.M. Poole, S.J. Jokela, M.D. McCluskey, Using persistent photoconductivity to write a low-resistance path in SrTiO3. Sci. Rep. 7, 6659 (2017)

    Article  Google Scholar 

  34. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, E. Kuramochi, Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip. Opt. Lett. 30, 2575–2577 (2005)

    Article  CAS  Google Scholar 

  35. S.L. Nguyen, C.D. Malliakas, J.A. Peters, Z. Liu, J. Im, L.-D. Zhao, M. Sebastian, H. Jin, H. Li, S. Johnsen, B.W. Wessels, A.J. Freeman, M.G. Kanatzidis, Photoconductivity in TI6SI4: a novel semiconductor for hard radiation detection. Chem. Mater. 25, 2868–2877 (2013)

    Article  CAS  Google Scholar 

  36. Z.G. Yin, X.W. Zhang, Z. Fu, X.L. Yang, J.L. Wu, G.S. Wu, L. Gong, P.K. Chu, Persistent photoconductivity in ZnO nanostructures induced by surface oxygen vacancy. Phys. Status Solidi RRL 6, 117–119 (2012)

    Article  CAS  Google Scholar 

  37. J.-J. Zhang, E.-J. Guo, L.-P. Wang, H.-Y. Yue, G.-J. Cao, L. Song, Effect of annealing treatment on morphologies and gas sensing properties of ZnO nanorods. Trans. Nonferrous Met. Soc. China 24, 736–742 (2014)

    Article  CAS  Google Scholar 

  38. K.C. Dubey, A. Srivastava, A. Srivastava, R.K. Shukla, Oxygen pressure and heat treatment effect on nanocrystalline ZnO films grown by pulsed laser deposition. Optoelectron. Adv. Mat. Rapid Commun. 4, 169–173 (2010)

    CAS  Google Scholar 

  39. R.K. Shukla, A. Srivastava, A. Srivastava, K.C. Dubey, Growth of transparent conducting nanocrystalline Al doped ZnO thin films by pulsed laser deposition. J. Cryst. Growth 294, 427–431 (2006)

    Article  CAS  Google Scholar 

  40. F. Zahedi, R.S. Dariani, S.M. Rozati, Effect of substrate temperature on the properties of ZnO thin films prepared by spray pyrolysis. Mater. Sci. Semicond. Process. 16, 245–249 (2013)

    Article  CAS  Google Scholar 

  41. A. Srivastava, N. Kumar, K.P. Misra, S. Khare, Enhancement of Band Gap of ZnO Nanocrystalline Films at a Faster Rate Using Sr Dopant. Electron. Mater. Lett. 10, 703–711 (2014)

    Article  CAS  Google Scholar 

  42. A. Srivastava, N. Kumar, S. Khare, Enhancement in UV emission and band gap by Fe doping in ZnO thin films. Opto-Electron. Rev. 22, 68–76 (2014)

    Article  CAS  Google Scholar 

  43. M. Babikier, J. Wang, D. Wang, Q. Li, J. Sun, Y. Yan, W. Wang, Q. Yu, S. Jiao, S. Gao, H. Li, Effect of annealing on lattice strain and near-band-edge emission of ZnO nanorods. Electron. Mater. Lett. 10, 749–752 (2014)

    Article  CAS  Google Scholar 

  44. D.-R. Hang, S.E. Islam, K.H. Sharma, S.-W. Kuo, C.-Z. Zhang, J.-J. Wang, Annealing effects on the optical and morphological properties of ZnO nanorods on AZO substrate by using aqueous solution method at low temperature. Nanoscale Res. Lett. 9, 632 (2014)

    Article  Google Scholar 

  45. M.K. Puchert, P.Y. Timbrell, R.N. Lamb, Post deposition annealing of radio frequency magnetron sputtered ZnO films. J. Vac. Sci. Technol. A 14, 2220 (1996)

    Article  CAS  Google Scholar 

  46. S.H. Park, T. Hanada, D.C. Oh, T. Minegishi, H. Goto, G. Fujimoto, J.S. Park, I.H. Im, J.H. Chang, M.W. Cho, T.Y. Inaba, Lattice relaxation mechanism of ZnO thin films grown on substrates by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 91, 231904 (2007)

    Article  Google Scholar 

  47. H. Seo, Y. Wang, G. Uchida, K. Kamataki, N. Itagaki, K. Koga, M. Shiratani, Growth control of ZnO nano-rod with various seeds and photovoltaic application. J. Phys.: Conf. Ser. 441, 012029 (2013)

    CAS  Google Scholar 

  48. Z. Yu, H. Li, Y. Qiu, X. Yang, W. Zhang, N. Xu, J. Sun, J. Wu, Size-controllable growth of ZnO nanorods on Si substrate. Superlattices Microstruct. 101, 469–479 (2017)

    Article  CAS  Google Scholar 

  49. K.L. Foo, U. Hashim, K. Muhammad, C.H. Voon, Sol–gel synthesized zinc oxide nanorods and their structural and optical investigation for optoelectronic application. Nanoscale Res. Lett. 9, 429 (2014)

    Article  Google Scholar 

  50. Y.S. Bae, D.C. Kim, C.H. Ahn, J.H. Kim, H.K. Cho, Growth of ZnO nanorod arrays by hydrothermal method using homo-seed-layers annealed at various temperatures. Surf. Interface Anal. 42, 978–982 (2010)

    Article  CAS  Google Scholar 

  51. B. Santoshkumar, A. Biswas, S. Kalyanaraman, R. Thangavel, G. Udayabhanu, G. Annadurai, S. Velumani, Influence of defect luminescence and structural modification on the electrical properties of Magnesium Doped Zinc Oxide Nanorods. Superlattices Microstruct. 106, 58–66 (2017)

    Article  CAS  Google Scholar 

  52. S.M. Mohammad, Z. Hassan, R.A. Talib, N.M. Ahmed, M.A. Al-Azawi, N.M. Abd-Alghafour, C.W. Chin, N.H. Al-Hardan, Fabrication of a highly flexible low-cost H2 gas sensor using ZnO nanorods grown on an ultra-thin nylon substrate. J Mater Sci: Mater Electron. 27, 9461–9469 (2016)

    CAS  Google Scholar 

  53. A.S.H. Hameed, C. Karthikeyan, A.P. Ahamed, N. Thajuddin, N.S. Alharbi, S.A. Alharbi, G. Ravi, In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumonia. Sci. Rep. 6, 24312 (2016)

    Article  CAS  Google Scholar 

  54. X. Qu, D. Jia, Controlled growth and optical properties of Al3+ doped ZnO nanodisks and nanorod clusters. Mater. Lett. 63, 412–414 (2009)

    Article  CAS  Google Scholar 

  55. J. Ding, X. Yan, Q. Xue, Study on field emission and photoluminescence properties of ZnO/graphene hybrids grown on Si substrates. Mater. Chem. Phys 133, 405–409 (2012)

    Article  CAS  Google Scholar 

  56. P. Ruankham, T. Sagawa, H. Sakaguchi, S. Yoshikawa, Vertically aligned ZnO nanorods doped with lithium for polymer solar cells: defect related photovoltaic properties. J. Mater. Chem. 21, 9710–9715 (2011)

    Article  CAS  Google Scholar 

  57. S.B. Zhang, S.-H. Wei, A. Zunger, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys. Rev. B 63, 075205 (2001)

    Article  Google Scholar 

  58. P.S. Xu, Y.M. Sun, C.S. Shi, F.Q. Xu, H.B. Pan, The electronic structure and spectral properties of ZnO and its defects. Nucl. Instr. Meth. Phys. Res. B 199, 286–290 (2003)

    Article  CAS  Google Scholar 

  59. A. Janotti, C.G. Van de Walle, Native point defects in ZnO. Phys. Rev. B 76, 165202 (2007)

    Article  Google Scholar 

  60. P. Erhart, K. Albe, A. Klein, First-principles study of intrinsic point defects in ZnO: Role of band structure, volume relaxation, and finite-size effects. Phys. Rev. B 73, 205203 (2006)

    Article  Google Scholar 

  61. C.H. Ahn, Y.Y. Kim, D.C. Kim, S.K. Mohanta, H.K. Cho, A comparative analysis of deep level emission in ZnO layers deposited by various methods. J. Appl. Phys. 105, 013502 (2009)

    Article  Google Scholar 

  62. R. Das, A. Kumar, Y. Kumar, S. Sen, P.M. Shirage, Effect of growth temperature on the optical properties of ZnO nano-structure grown by simple hydrothermal method. RSC Adv. 5, 60365–60372 (2015)

    Article  CAS  Google Scholar 

  63. S. Vempati, J. Mitra, P. Dawson, One-step synthesis of ZnO nanosheets: a blue-white fluorophore. Nanoscale Res. Lett. 7, 470 (2012)

    Article  Google Scholar 

  64. D. Behera, B.S. Acharya, Nano-star formation in Al-doped ZnO thin film deposited by dip-dry method and its characterization using atomic force microscopy, electron probe microscopy, photoluminescence and laser Raman spectroscopy. J. Lumin. 128, 1577–1586 (2008)

    Article  CAS  Google Scholar 

  65. M.J. Chithra, M. Sathya, K. Pushpanathan, Effect of pH on Crystal Size and Photoluminescence Property of ZnO Nanoparticles Prepared by Chemical Precipitation Method. Acta Metall. Sin. (Engl. Lett.) 28, 394–404 (2015)

    Article  Google Scholar 

  66. B. Lin, Z. Fu, Y. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. 79, 943–945 (2001)

    Article  CAS  Google Scholar 

  67. K. Bandopadhyay, J. Mitra, Zn interstitials and O vacancies responsible for n-type ZnO: what do the emission spectra reveal? RSC Adv. 5, 23540–23547 (2015)

    Article  CAS  Google Scholar 

  68. Z.-M. Liao, H.-Z. Zhang, Y.-B. Zhou, J. Xu, J.-M. Zhang, D.-P. Yu, Surface effects on photoluminescence of single ZnO nanowires. Phys. Lett. A 372, 4505–4509 (2008)

    Article  CAS  Google Scholar 

  69. N. Kumar, A. Srivastava, Faster photoresponse, enhanced photosensitivity and photoluminescence in nanocrystalline ZnO films suitably doped by Cd. J. Alloys Compd. 706, 438–446 (2017)

    Article  CAS  Google Scholar 

  70. N. Kumar, A. Srivastava, Green photoluminescence and photoconductivity from screen-printed Mg doped ZnO films. J. Alloys Compd. 735, 312–318 (2018)

    Article  CAS  Google Scholar 

  71. R.W. Smith, A. Rose, Space-Charge-Limited Currents in Single Crystals of Cadmium Sulfide. Phys. Rev. 97, 1531–1537 (1955)

    Article  CAS  Google Scholar 

  72. A. Rose, An outline of some photoconductive processes. RCA Rev. 12, 362–414 (1951)

    Google Scholar 

  73. S. Dhara, P.K. Giri, Enhanced UV photosensitivity from rapid thermal annealed vertically aligned ZnO nanowires. Nanoscale Res. Lett. 6, 504 (2011)

    Article  Google Scholar 

  74. J. Bao, I. Shalish, Z. Su, R. Gurwitz, F. Capasso, X. Wang, Z. Ren, Photoinduced oxygen release and persistent photoconductivity in ZnO nanowires. Nanoscale Res. Lett. 6, 404 (2011)

    Article  Google Scholar 

  75. S. Lee, A. Nathan, S. Jeon, J. Robertson, Oxygen defect-induced metastability in oxide semiconductors probed by gate pulse spectroscopy. Sci. Rep. 5, 14902–14911 (2015)

    Article  CAS  Google Scholar 

  76. R. Gurwitz, R. Cohen, I. Shalish, Interaction of light with the ZnO surface: Photon induced oxygen “breathing”, oxygen vacancies, persistent photoconductivity and persistent photovoltage. J. Appl. Phys. 115, 033701 (2014)

    Article  Google Scholar 

  77. P.I. Reyes, C.-J. Ku, Z. Duan, Y. Xu, E. Garfunkel, Y. Lu, Reduction of persistent photoconductivity in ZnO thin film transistor-based UV photodetector. Appl. Phys. Lett. 101, 031118 (2012)

    Article  Google Scholar 

  78. Y. Wang, Z. Liao, G. She, L. Mu, D. Chen, W. Shi, Optical modulation of persistent photoconductivity in ZnO nanowires. Appl. Phys. Lett. 98, 203108 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Centre of Excellence Scheme of U.P. State Government, Lucknow, for providing XRD facility, to DST New Delhi for providing UV–Vis-NIR spectrometer facility (vide project no.SR/S2/CMP_0028/2010), and to UGC through SAP for providing Fluorescence spectrometer facility at the Department of Physics, University of Lucknow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anchal Srivastava.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Katiyar, A., Kumar, N., Shukla, R.K. et al. Growth and study of c-axis-oriented vertically aligned ZnO nanorods on seeded substrate. J Mater Sci: Mater Electron 32, 15687–15706 (2021). https://doi.org/10.1007/s10854-021-06121-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06121-z

Navigation