Skip to main content
Log in

One-step synthesis of ultra-high aspect ratio silver nanowires for high-performance flexible transparent conductive films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Silver nanowires (AgNWs) are promising candidate materials for flexible transparent conductive films (FTCFs), which are key parts in fabricating flexible optoelectronic devices. In the present work, we developed a modified polyol method, allowing simple and rapid synthesis of AgNWs with an ultra-high aspect ratio up to 2600, by adjusting the concentration of Cl and Br. Further, AgNWs–mixed cellulose ester membrane (MCE) FTCFs by vacuum filtration method were fabricated, exhibiting low sheet resistance of 6.53 Ω/sq and transmittance of 83.20%, which are comparable to those of typical indium tin oxide electrodes. Also, mechanical robustness results show the sheet resistance of the AgNWs–MCE film increased 16 and 2.8% after 300 times bending tests and 100 times of adhesion tests, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Z. Zhang, Y. Gao, H. Luo, L. Kang, Z. Chen, J. Du, M. Kanehira, Y. Zhang, Z.L. Wang, Solution-based fabrication of vanadium dioxide on F:SnO2 substrates with largely enhanced thermochromism and low-emissivity for energy-saving applications. Energy Environ. Sci. 4(10), 4290–4297 (2011). https://doi.org/10.1039/C1EE02092G

    Article  CAS  Google Scholar 

  2. L. Zhou, M. Yu, X. Chen, S. Nie, W.Y. Lai, W. Su, Z. Cui, W. Huang, Screen-printed poly (3, 4‐ethylenedioxythiophene): poly (styrenesulfonate) grids as ITO‐free anodes for flexible organic light‐emitting diodes. Adv. Func. Mater. 28(11), 1705955 (2018). https://doi.org/10.1002/adfm.201705955

    Article  CAS  Google Scholar 

  3. H.-W. Chen, J.-H. Lee, B.-Y. Lin, S. Chen, S.-T. Wu, Liquid crystal display and organic light-emitting diode display: present status and future perspectives. Light Sci. Appl. 7(3), 17168–17168 (2018). https://doi.org/10.1038/lsa.2017.168

    Article  CAS  Google Scholar 

  4. M. Hossain, K. Rahman, M. Islam, M. Akhtaruzzaman, H. Misran, M. Alghoul, N. Amin, Growth optimization of ZnxCd1-xS films on ITO and FTO coated glass for alternative buffer application in CdTe thin film solar cells. Opt. Mater. 86, 270–277 (2018). https://doi.org/10.1016/j.optmat.2018.09.045

    Article  CAS  Google Scholar 

  5. Geological Survey, Mineral Commodity Summaries (Government Printing Office, Washington, D.C., 2016).

    Google Scholar 

  6. A. Elschner, W. Lövenich, Solution-deposited PEDOT for transparent conductive applications. MRS Bull. 36(10), 794 (2011). https://doi.org/10.1557/mrs.2011.232

    Article  CAS  Google Scholar 

  7. S.I. Na, S.S. Kim, J. Jo, D.Y. Kim, Efficient and flexible ITO-free organic solar cells using highly conductive polymer anodes. Adv. Mater. 20(21), 4061–4067 (2008). https://doi.org/10.1002/adma.200800338

    Article  CAS  Google Scholar 

  8. D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. Ly, M.E. Tompson, C. Zhou, Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. Nano Lett. 6(9), 1880–1886 (2006). https://doi.org/10.1021/nl0608543

    Article  CAS  Google Scholar 

  9. P. Wu, T.-X. Jiang, S. Suksaweang, R.B. Widelitz, C.-M. Chuong, Molecular shaping of the beak. Science 305(5689), 1465–1466 (2004). https://doi.org/10.1126/science.1098109

    Article  CAS  Google Scholar 

  10. J.K. Wassei, R.B. Kaner, Graphene, a promising transparent conductor. Mater. today 13(3), 52–59 (2010). https://doi.org/10.1016/S1369-7021(10)70034-1

    Article  CAS  Google Scholar 

  11. J.H. Lee, D.W. Shin, V.G. Makotchenko, A.S. Nazarov, V.E. Fedorov, Y.H. Kim, J.Y. Choi, J.M. Kim, J.B. Yoo, One-step exfoliation synthesis of easily soluble graphite and transparent conducting graphene sheets. Adv. Mater. 21(43), 4383–4387 (2009). https://doi.org/10.1002/adma.200900726

    Article  CAS  Google Scholar 

  12. A.R. Rathmell, B.J. Wiley, The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. Adv. Mater. 23(41), 4798–4803 (2011). https://doi.org/10.1002/adma.201102284

    Article  CAS  Google Scholar 

  13. B. Zheng, Q. Zhu, Y. Zhao, Fabrication of high-quality silver nanowire conductive film and its application for transparent film heaters. J. Mater. Sci. Technol. 71, 221–227 (2021). https://doi.org/10.1016/j.jmst.2020.07.021

    Article  Google Scholar 

  14. W. Xu, Q. Xu, Q. Huang, R. Tan, W. Shen, W. Song, Fabrication of flexible transparent conductive films with silver nanowire by vacuum filtration and PET mold transfer. J. Mater. Sci. Technol. 32(2), 158–161 (2016). https://doi.org/10.1016/j.jmst.2015.12.009

    Article  CAS  Google Scholar 

  15. L. Hu, H.S. Kim, J.-Y. Lee, P. Peumans, Y. Cui, Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4(5), 2955–2963 (2010). https://doi.org/10.1021/nn1005232

    Article  CAS  Google Scholar 

  16. M.R. Azani, H. Azin, T. Tomás, Benefits, problems, and solutions of silver nanowire transparent conductive electrodes in Indium Tin Oxide (ITO)-free flexible solar cells. Adv. Energy Mater. 10(48), 2002536 (2020). https://doi.org/10.1002/aenm.202002536

    Article  CAS  Google Scholar 

  17. S. Lan, H.I. Shin, H.K. Kim, Electrically stable Ag nanowire network anodes densely passivated by a conductive amorphous InSnTiO layer for flexible organic photovoltaics. Appl. Phys. Lett. 117(12), 123303 (2020). https://doi.org/10.1063/5.0018165

    Article  CAS  Google Scholar 

  18. S. Lee, J. Jang, T. Park, Y.M. Park, J.S. Park, Y.K. Kim, H.K. Lee, E.C. Jeon, D.K. Lee, B. Ahn, C.H. Chung, Electrodeposited silver nanowire transparent conducting electrodes for thin-film solar cells. ACS Appl. Mater. Interfaces 12(5), 6169–6175 (2020). https://doi.org/10.1021/acsami.9b17168

    Article  CAS  Google Scholar 

  19. J. Jiu, T. Araki, J. Wang, M. Nogi, T. Sugahara, S. Nagao, H. Koga, K. Suganuma, E. Nakazawa, M. Hara, Facile synthesis of very-long silver nanowires for transparent electrodes. J. Mater. Chem. A 2(18), 6326–6330 (2014). https://doi.org/10.1039/C4TA00502C

    Article  CAS  Google Scholar 

  20. R.M. Mutiso, M.C. Sherrott, A.R. Rathmell, B.J. Wiley, K.I. Winey, Integrating simulations and experiments to predict sheet resistance and optical transmittance in nanowire films for transparent conductors. ACS Nano 7(9), 7654–7663 (2013). https://doi.org/10.1021/nn403324t

    Article  CAS  Google Scholar 

  21. N. Chou, Y. Kim, S. Kim, A method to pattern silver nanowires directly on wafer-scale PDMS substrate and its applications. ACS Appl. Mater. Interfaces. 8(9), 6269–6276 (2016). https://doi.org/10.1021/acsami.5b11307

    Article  CAS  Google Scholar 

  22. S.M. Bergin, Y.-H. Chen, A.R. Rathmell, P. Charbonneau, Z.-Y. Li, B.J. Wiley, The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 4(6), 1996–2004 (2012). https://doi.org/10.1039/C2NR30126A

    Article  CAS  Google Scholar 

  23. Y. Xia, Y. Sun, Y. Yin, B. Mayers, T. Herricks, Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone). Chem. Mater. 14, 4736–4745 (2002). https://doi.org/10.1021/cm020587b

    Article  CAS  Google Scholar 

  24. E.-J. Lee, M.-H. Chang, Y.-S. Kim, J.-Y. Kim, High-pressure polyol synthesis of ultrathin silver nanowires: electrical and optical properties. APL Mater. 1(4), 042118 (2013). https://doi.org/10.1063/1.4826154

    Article  CAS  Google Scholar 

  25. S. Coskun, B. Aksoy, H.E. Unalan, Polyol synthesis of silver nanowires: an extensive parametric study. Cryst. Growth Des. 11(11), 4963–4969 (2011). https://doi.org/10.1021/cg200874g

    Article  CAS  Google Scholar 

  26. R.R. Da Silva, M. Yang, S.-I. Choi, M. Chi, M. Luo, C. Zhang, Z.-Y. Li, P.H. Camargo, S.J.L. Ribeiro, Y. Xia, Facile synthesis of sub-20 nm silver nanowires through a bromide-mediated polyol method. ACS Nano 10(8), 7892–7900 (2016). https://doi.org/10.1021/acsnano.6b03806

    Article  CAS  Google Scholar 

  27. B. Li, S. Ye, I.E. Stewart, S. Alvarez, B.J. Wiley, Synthesis and purification of silver nanowires to make conducting films with a transmittance of 99%. Nano Lett. 15(10), 6722–6726 (2015). https://doi.org/10.1021/acs.nanolett.5b02582

    Article  CAS  Google Scholar 

  28. S. Bae, S.J. Kim, D. Shin, J.-H. Ahn, B.H. Hong, Towards industrial applications of graphene electrodes. Phys. Scr. 2012, 014024 (2012). https://doi.org/10.1088/0031-8949/2012/T146/014024 T146)

    Article  CAS  Google Scholar 

  29. W. Zhou, A. Hu, S. Bai, Y. Ma, D. Bridges, Anisotropic optical properties of large-scale aligned silver nanowire films via controlled coffee ring effects. RSC Adv. 5(49), 39103–39109 (2015). https://doi.org/10.1039/C5RA04214C

    Article  CAS  Google Scholar 

  30. Y. Ge, X. Duan, M. Zhang, L. Mei, J. Hu, W. Hu, X. Duan, Direct room temperature welding and chemical protection of silver nanowire thin films for high performance transparent conductors. J. Am. Chem. Soc. 140(1), 193–199 (2018). https://doi.org/10.1021/jacs.7b07851

    Article  CAS  Google Scholar 

  31. Y. Sun, B. Mayers, T. Herricks, Y. Xia, Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett. 3(7), 955–960 (2003). https://doi.org/10.1021/nl034312m

    Article  CAS  Google Scholar 

  32. U. Lang, E. Müller, N. Naujoks, J. Dual, Microscopical investigations of PEDOT: PSS thin films. Adv. Func. Mater. 19(8), 1215–1220 (2009). https://doi.org/10.1002/adfm.200801258

    Article  CAS  Google Scholar 

  33. Y.C. Jung, D. Shimamoto, H. Muramatsu, Y.A. Kim, T. Hayashi, M. Terrones, M. Endo, Robust, conducting, and transparent polymer composites using surface-modified and individualized double‐walled carbon nanotubes. Adv. Mater. 20(23), 4509–4512 (2008). https://doi.org/10.1002/adma.200801659

    Article  CAS  Google Scholar 

  34. M. Kaempgen, G. Duesberg, S. Roth, Transparent carbon nanotube coatings. Appl. Surf. Sci. 252(2), 425–429 (2005). https://doi.org/10.1016/j.apsusc.2005.01.020

    Article  CAS  Google Scholar 

  35. H. Gu, T.M. Swager, Fabrication of free-standing, conductive, and transparent carbon nanotube films. Adv. Mater. 20(23), 4433–4437 (2008). https://doi.org/10.1002/adma.200801062

    Article  CAS  Google Scholar 

  36. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5(8), 574 (2010). https://doi.org/10.1038/nnano.2010.132

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 51505321 and 52075360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, X., Wang, W., Jia, J. et al. One-step synthesis of ultra-high aspect ratio silver nanowires for high-performance flexible transparent conductive films. J Mater Sci: Mater Electron 32, 15622–15632 (2021). https://doi.org/10.1007/s10854-021-06111-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06111-1

Navigation