Skip to main content

Advertisement

Log in

Preparation and photo-electrochemical characterization of the vanadium fluorophosphate Na3V2O2(PO4)2F. application to the photo degradation of methyl violet

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Na3V2O2(PO4)2F was synthesized by a facile hydrothermal route at 250 °C. The synthesized product (abbreviated NVPOF), characterized by X-ray diffraction (XRD) powder crystallizes in a tetragonal symmetry (space group: I4/mmm) with lattice parameters: a = 6.3956 Å, c = 10.6591 Å. The FTIR spectroscopy shows the characteristic peaks of (PO4)3− and V–O bonds. The morphology studied by scanning electron microscopy (SEM) shows that the image displays crystals with rectangular shape; the energy dispersive X-ray spectrometry (EDX) confirms the elements existing in the compound with a composition close to the chemical formulation. The bandgap energy (Eg = 1.63 eV) of NVPOF is consistent with its green pale color. We also reported for the first time the photo-electrochemical characterization. The Mott–Schottky characteristic, plotted in Na2SO4 solution, displays p-type behavior with holes as majority carriers, a flat band potential (Efb = 1.31 VSCE). The Electrochemical Impedance Spectroscopy (EIS) shows one semicircle in the frequency range (10 MHz—100 kHz), attributed to the charge transfer with a high impedance. As an application, the photoactivity of synthesized NVPOF was studied by degrading the methyl violet, a hazardous dye, under visible light irradiation. NVPOF is a potential photocatalyst for the photodegradation through the OH and O2•− radicals. An abatement of 82% was obtained within 240 min and the kinetic follows a pseudo-first model with a half photocatalytic life of 98 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Ahmad, M. Rafatullah, O. Sulaiman, M.H. Ibrahim, R. Hashim, Scavenging behaviour of meranti sawdust in the removal of methylene blue from aqueous solution. J. Hazard. Mater. 170, 357–365 (2009)

    CAS  Google Scholar 

  2. W. Zhang et al., Removal of dyes from aqueous solutions by straw based adsorbents: batch and column studies. Chem. Eng. J. 168, 1120–1127 (2011)

    CAS  Google Scholar 

  3. G.O. El-Sayed, Removal of methylene blue and crystal violet from aqueous solutions by palm kernel fiber. Desalination 272, 225–232 (2011)

    CAS  Google Scholar 

  4. J.-W. Lee, S.-P. Choi, R. Thiruvenkatachari, W.-G. Shim, H. Moon, Evaluation of the performance of adsorption and coagulation processes for the maximum removal of reactive dyes. Dyes Pigments 69, 196–203 (2006)

    CAS  Google Scholar 

  5. R.V. Kandisa, K.V.N. Saibaba, K.B. Shaik, R. Gopinath, Dye removal by adsorption: a review. J. Bioremediat. Biodegrad. (2016). https://doi.org/10.4172/2155-6199.1000371

    Article  Google Scholar 

  6. J.N. Neetha, P. Ujwal, K. Sandesh, H. Santhosh, K. Girish, Aerobic biodegradation of acid blue-9 dye by Bacillus fermus isolated from Annona reticulata. Environ. Technol. Innov. 11, 253–261 (2018)

    Google Scholar 

  7. S. Popli, U.D. Patel, Destruction of azo dyes by anaerobic–aerobic sequential biological treatment: a review. Int. J. Environ. Sci. Technol. 12, 405–420 (2015)

    CAS  Google Scholar 

  8. L. Bay, K. West, B. Winther-Jensen, T. Jacobsen, Electrochemical reaction rates in a dye-sensitised solar cell—the iodide/tri-iodide redox system. Sol. Energy Mater. Sol. Cells 90, 341–351 (2006)

    CAS  Google Scholar 

  9. R. Bagtache, K. Abdmeziem, G. Rekhila, M. Trari, Synthesis and semiconducting properties of Na2MnPO4F. Application to degradation of rhodamine B under UV-light. Mater. Sci. Semicond. Process. 51, 1–7 (2016)

    CAS  Google Scholar 

  10. K.M. Lee, C.W. Lai, K.S. Ngai, J.C. Juan, Recent developments of zinc oxide based photocatalyst in water treatment technology: a review. Water Res. 88, 428–448 (2016)

    CAS  Google Scholar 

  11. R. Bagtache, G. Rekhila, K. Abdmeziem, M. Trari, Characterization of a copper phosphate triazole metal organic framework material (Cu3PO4 (C2N3H2) 2OH) and oxygen evolution studies. Mater. Sci. Semicond. Process. 23, 144–150 (2014)

    CAS  Google Scholar 

  12. K. Zhang, L. Guo, Metal sulphide semiconductors for photocatalytic hydrogen production. Catal. Sci. Technol. 3, 1672–1690 (2013)

    CAS  Google Scholar 

  13. D. Ayodhya, G. Veerabhadram, A review on recent advances in photodegradation of dyes using doped and heterojunction based semiconductor metal sulfide nanostructures for environmental protection. Mater. Today Energy 9, 83–113 (2018)

    Google Scholar 

  14. S. Liu, J. Yu, B. Cheng, M. Jaroniec, Fluorinated semiconductor photocatalysts: tunable synthesis and unique properties. Adv. Colloid Interface. Sci. 173, 35–53 (2012)

    CAS  Google Scholar 

  15. A. Sivakumar, B. Murugesan, A. Loganathan, P. Sivakumar, A review on decolourisation of dyes by photodegradation using various bismuth catalysts. J. Taiwan Inst. Chem. Eng. 45, 2300–2306 (2014)

    CAS  Google Scholar 

  16. X. Meng, Z. Zhang, Bismuth-based photocatalytic semiconductors: introduction, challenges and possible approaches. J. Mol. Catal. A 423, 533–549 (2016)

    CAS  Google Scholar 

  17. W.-Q. Kan et al., Four polyoxometalate-based semiconductive coordination polymers: syntheses, structures, photoluminescent and photocatalytic properties. Synth. Met. 198, 51–58 (2014)

    CAS  Google Scholar 

  18. T.A. Taha, S. Elrabaie, M.T. Attia, Exploring the structural, thermal and dielectric properties of PVA/Ni0.5Zn0.5Fe2O4 composites. J. Electron. Mater. 48, 6797–6806 (2019)

    CAS  Google Scholar 

  19. T.A. Taha, A. Hassona, S. Elrabaie, M.T. Attia, Dielectric spectroscopy of PVA-Ni0.5Zn0.5Fe2O4 polymer nanocomposite films. J. Asian Ceram. Soc. 8, 1076–1082 (2020)

    Google Scholar 

  20. P. Serras, V. Palomares, T. Rojo, H.E.A. Brand, N. Sharma, Structural evolution of high energy density V 3+/V 4+ mixed valent Na 3 V 2 O 2x (PO 4) 2 F 3–2x (x= 0.8) sodium vanadium fluorophosphate using in situ synchrotron X-ray powder diffraction. J. Mater. Chem. A 2, 7766–7779 (2014)

    CAS  Google Scholar 

  21. Y. Park et al., A family of high-performance cathode materials for Na-ion batteries, Na3 (VO1− xPO4) 2 F1+ 2x (0≤ x≤ 1): combined first-principles and experimental study. Adv. Func. Mater. 24, 4603–4614 (2014)

    CAS  Google Scholar 

  22. Y. Qi et al., Superior Na-storage performance of low-temperature-synthesized Na3 (VO1− xPO4) 2F1+ 2x (0≤ x≤ 1) nanoparticles for Na-Ion batteries. Angew. Chem. Int. Ed. 54, 9911–9916 (2015)

    CAS  Google Scholar 

  23. N. Sharma et al., Sodium distribution and reaction mechanisms of a Na3V2O2 (PO4) 2F electrode during use in a sodium-ion battery. Chem. Mater. 26, 3391–3402 (2014)

    CAS  Google Scholar 

  24. J. Guo et al., High-energy/power and low-temperature cathode for sodium-ion batteries: in situ XRD study and superior full-cell performance. Adv. Mater. 29, 1701968 (2017)

    Google Scholar 

  25. Z.-Y. Gu et al., Precisely controlled preparation of an advanced Na 3 V 2 (PO 4) 2 O 2 F cathode material for sodium ion batteries: the optimization of electrochemical properties and electrode kinetics. Inorg. Chem. Front. 6, 988–995 (2019)

    CAS  Google Scholar 

  26. L. Bi et al., Improving electrochemical performance of Na3 (VPO4) 2O2F cathode materials for sodium ion batteries by constructing conductive scaffold. Electrochim. Acta 337, 135816 (2020)

    CAS  Google Scholar 

  27. X.-X. Zhao et al., Temperature-dependent electrochemical properties and electrode kinetics of Na3V2 (PO4) 2O2F cathode for sodium-ion batteries with high energy density. Chemistry (2020). https://doi.org/10.1002/chem.202000943

    Article  Google Scholar 

  28. H. Tan, X.Z. Yu, K. Huang, J. Zhong, B. Lu, Large-scale carambola-like V2O5 nanoflowers arrays on microporous reed carbon as improved electrochemical performances lithium-ion batteries cathode. J. Energy Chem. 51, 388–395 (2020)

    Google Scholar 

  29. G. Deng et al., Graphene quantum dots-shielded Na3 (VO) 2 (PO4) 2F@ C nanocuboids as robust cathode for Na-ion battery. Energy Storage Mater. 5, 198–204 (2016)

    Google Scholar 

  30. Y. Yin et al., Robust three-dimensional graphene skeleton encapsulated Na3V2O2 (PO4) 2F nanoparticles as a high-rate and long-life cathode of sodium-ion batteries. Nano Energy 41, 452–459 (2017)

    CAS  Google Scholar 

  31. P.R. Kumar, Y.H. Jung, J.E. Wang, D.K. Kim, Na3V2O2 (PO4) 2F-MWCNT nanocomposites as a stable and high rate cathode for aqueous and non-aqueous sodium-ion batteries. J. Power Sources 324, 421–427 (2016)

    CAS  Google Scholar 

  32. W. Chang et al., Freestanding Na3V2O2 (PO4) 2F/graphene aerogels as high-performance cathodes of sodium-ion full batteries. ACS Appl. Mater. Interfaces. 12, 41419–41428 (2020)

    CAS  Google Scholar 

  33. M. Xu et al., Na 3 V 2 O 2 (PO 4) 2 F/graphene sandwich structure for high-performance cathode of a sodium-ion battery. Phys. Chem. Chem. Phys. 15, 13032–13037 (2013)

    CAS  Google Scholar 

  34. L.-L. Zhang et al., N/P-dual-doped carbon-coated Na3V2 (PO4) 2O2F microspheres as a high-performance cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces. 12, 3670–3680 (2019)

    Google Scholar 

  35. Y. Qi et al., Scalable room-temperature synthesis of multi-shelled Na3 (VOPO4) 2F microsphere cathodes. Joule 2, 2348–2363 (2018)

    CAS  Google Scholar 

  36. M. Peng et al., Hierarchical Ru-doped sodium vanadium fluorophosphates hollow microspheres as a cathode of enhanced superior rate capability and ultralong stability for sodium-ion batteries. Nano Energy 31, 64–73 (2017)

    CAS  Google Scholar 

  37. F. Sauvage, E. Quarez, J.-M. Tarascon, E. Baudrin, Crystal structure and electrochemical properties vs.Na+ of the sodium fluorophosphate Na1. 5VOPO4F0. 5. Solid State Sci. 8, 1215–1221 (2006)

    CAS  Google Scholar 

  38. R. López, R. Gómez, Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO 2: a comparative study. J. Sol Gel. Sci. Technol. 61, 1–7 (2012)

    Google Scholar 

  39. A.S. Abouhaswa, T.A. Taha, Tailoring the optical and dielectric properties of PVC/CuO nanocomposites. Polym. Bull. 77, 6005–6016 (2020)

    CAS  Google Scholar 

  40. N. Hassan, A.M. Mansour, N. Roushdy, A.A.M. Farag, W.G. Osiris, Optical sensing performance characteristics of schottky devices diodes based nano-particle disodium 6-hydroxy-5-[(2-methoxy-5-methyl-4-sulfophenyl)azo]-2-naphthalenesulfonate thin films: a comparison study. Optik 158, 1255–1265 (2018)

    CAS  Google Scholar 

  41. A.M. Mansour, A.B. Abou Hammad, A.M. El Nahrawy, Sol–gel synthesis and physical characterization of novel MgCrO4-MgCu2O3 layered films and MgCrO4-MgCu2O3/p-Si based photodiode. Nano Struct. Nano Objects 25, 100646 (2021)

    CAS  Google Scholar 

  42. A.M. El Nahrawy, A.B. Abou Hammad, A.M. Mansour, Compositional effects and optical properties of P2O5 doped magnesium Silicate mesoporous thin films. Arab. J. Sci. Eng. (2020). https://doi.org/10.1007/s13369-020-05067-4

    Article  Google Scholar 

  43. J. Ângelo, P. Magalhães, L. Andrade, A. Mendes, Characterization of TiO2-based semiconductors for photocatalysis by electrochemical impedance spectroscopy. Appl. Surf. Sci. 387, 183–189 (2016)

    Google Scholar 

  44. A. Butler, The coordination and redox chemistry of vanadium in aqueous solution, in Vanadium in Biological Systems. ed. by N. Dennis Chasteen (Springer, Dordrecht, 1990), pp. 25–49

    Google Scholar 

  45. Z. Zhang et al., Toward high power-high energy sodium cathodes: a case study of bicontinuous ordered network of 3D porous Na3 (VO) 2 (PO4) 2F/rGO with pseudocapacitance effect. Small 15, 1900356 (2019)

    Google Scholar 

  46. C. Ma et al., Mechanism investigation of high performance Na3V2 (PO4) 2O2F/reduced graphene oxide cathode for sodium-ion batteries. J. Power Sources 482, 228906 (2021)

    CAS  Google Scholar 

  47. M. Metikoš-Huković, Z. Grubač, S. Omanovic, Change of n-type to p-type conductivity of the semiconductor passive film on N-steel: enhancement of the pitting corrosion resistance. J. Serb. Chem. Soc. 78, 2053–2067 (2013)

    Google Scholar 

  48. S. Dhillon, R. Kant, Theory for electrochemical impedance spectroscopy of heterogeneous electrode with distributed capacitance and charge transfer resistance. J. Chem. Sci. 129, 1277–1292 (2017)

    CAS  Google Scholar 

  49. D. Chen et al., Oxyvanite V 3 O 5: a new intercalation-type anode for lithium-ion battery. InfoMat (2019). https://doi.org/10.1002/inf2.12011

    Article  Google Scholar 

  50. K. Atacan, N. Güy, B. Boutra, M. Özacar, Enhancement of photoelectrochemical hydrogen production by using a novel ternary Ag2CrO4/GO/MnFe2O4 photocatalyst. Int. J. Hydrog. Energy 45, 17453–17467 (2020)

    CAS  Google Scholar 

  51. K. Rajeshwar, Fundamentals of semiconductor electrochemistry and photoelectrochemistry. Encycl. Electrochem. 6, 1–53 (1990)

    Google Scholar 

  52. J.A. Glasscock, P.R.F. Barnes, I.C. Plumb, N. Savvides, Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. J. Phys. Chem. C 111, 16477–16488 (2007)

    CAS  Google Scholar 

  53. W. Zhao et al., Facile in-suit synthesis of Ag/AgVO3 one-dimensional hybrid nanoribbons with enhanced performance of plasmonic visible-light photocatalysis. Appl. Catal. B 163, 288–297 (2015)

    CAS  Google Scholar 

  54. A. Kumar, G. Pandey, A review on the factors affecting the photocatalytic degradation of hazardous materials. Mater. Sci. Eng. Int. J. 1, 00018 (2017)

    Google Scholar 

  55. S. Alkaykh, A. Mbarek, E.E. Ali-Shattle, Photocatalytic degradation of methyleneblue dye in aqueous solution by MnTiO3 nanoparticles under sunlight irradiation. Heliyon 6, e03663 (2020)

    Google Scholar 

  56. S. Hisaindee, M.A. Meetani, M.A. Rauf, Application of LC-MS to the analysis of advanced oxidation process (AOP) degradation of dye products and reaction mechanisms. TrAC Trends Anal. Chem. 49, 31–44 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding (Grant N° B00L01UN160420190020) from the Faculty of Chemistry (Algiers), Algeria.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Bagtache or M. Trari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tartaya, S., Bagtache, R., Djaballah, A.M. et al. Preparation and photo-electrochemical characterization of the vanadium fluorophosphate Na3V2O2(PO4)2F. application to the photo degradation of methyl violet. J Mater Sci: Mater Electron 32, 15441–15452 (2021). https://doi.org/10.1007/s10854-021-06093-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06093-0

Navigation