Skip to main content
Log in

Magnetic properties of FeSiCr alloy powder coils made by gel casting process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A molding coil is molded directly onto enameled wire using soft magnetic materials. When the molding coil size becomes smaller and thinner, the granules consisting of magnetic powder and organic binder cannot evenly fill the coil center column during molding, thereby causing cracks or deterioration in the products. In this study, FeSiCr alloy powder coils were prepared using gel casting. The structures and magnetic properties of coils prepared by dry pressing and gel casting were compared. The experimental results showed that the low-viscosity slurry used in the gel casting process can significantly improve the powder filling uniformity in the coil center. Gel casting protects the enameled wire from being damaged and short-circuited. FeSiCr alloy powder coils prepared using the gel casting process have higher inductance and better DC-bias superposition characteristics than those prepared using dry pressing. However, if the slurry viscosity for gel casting is too high, the powder packing in the coil center column becomes worse, which leads to a lower inductance value. The binder content in gel casting is also lower than that in dry pressing, resulting in a higher initial permeability with the same or higher mechanical strength as that prepared by dry pressing due to the more homogeneous binder distribution. For small-sized and high-inductance FeSiCr alloy powder coils, the problems of uneven packing and cracks in the coil center column can be effectively solved using the gel casting process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H.I. Hsiang, J. Mater. Sci.: Mater. Electron. 31, 16089–16110 (2020)

    CAS  Google Scholar 

  2. H.I. Hsiang, L.F. Fan, K.T. Ho, IEEE Trans. Magn. 54, 2000407 (2018)

    Article  Google Scholar 

  3. Y.P. Wu, H.Y. Chiang, H.I. Hsiang, AIP Adv 8, 085006 (2019)

    Article  Google Scholar 

  4. Y.P. Wu, H.Y. Chiang, H.I. Hsiang, J. Mater. Sci.: Mater. Electron. 30, 8080–8088 (2019)

    CAS  Google Scholar 

  5. W. Nie, T. Yu, Z.G. Wang, X.W. Wei, J. Alloys Compd. 864, 158215 (2021)

    Article  CAS  Google Scholar 

  6. D. Pan, D. Li, H. Han, M. Wei, Mater. Res. Express 6, 036103 (2019)

    Article  Google Scholar 

  7. G. Tari, Am. Ceram. Soc. Bull. 82, 43–46 (2003)

    CAS  Google Scholar 

  8. Y. Huang, J. Yang, Novel Colloidal Forming of Ceramics (Springer, Berlin, 2010), pp. 325–370

    Book  Google Scholar 

  9. J.W. Cao, Z.L. Lu, K. Miao, S. Li, Z.R. Wang, D.C. Li, B.H. Lu, J. Alloys Compd. 805, 303–308 (2019)

    Article  CAS  Google Scholar 

  10. K.Y. Lee, C.C. Chen, H.I. Hsiang, F.S. Yen, C.Y. Huang, Int. J. Appl. Ceram. Technol. 16, 1493–1500 (2019)

    Article  CAS  Google Scholar 

  11. M.A. Janney, O.O. Omatete, C.A. Walls, S.D. Nunn, R.J. Ogle, G. Westmoreland, J. Am. Ceram. Soc. 81, 581–591 (1998)

    Article  CAS  Google Scholar 

  12. X. Mao, S. Shimai, M. Dong, S. Wang, J. Am. Ceram. Soc. 91, 1354–1356 (2008)

    Article  CAS  Google Scholar 

  13. S.J. Lombardo, R. Sachanandani, in Processing and properties of advanced ceramics and composites. Ceramic transaction 203. ed. by N.P. Bansal, J.P. Singh (Wiley, Hoboken, 2009), pp. 239–247

    Chapter  Google Scholar 

  14. H.I. Hsiang, J.F. Chueh, Int. J. Appl. Ceram. Technol. 12, 1008–1015 (2015)

    Article  CAS  Google Scholar 

  15. Y. Duan, S. Gu, Z. Zhang, M. Wen, J. Alloys Compd. 542, 90–96 (2012)

    Article  CAS  Google Scholar 

  16. H. Shokrollahi, K. Janghorban, J. Mater. Process. Technol. 189, 1–12 (2007)

    Article  CAS  Google Scholar 

  17. K. Kawahara, D. Iemura, S. Tsurekawa, T. Watanabe, Mater. Trans. 44, 2570–2577 (2003)

    Article  CAS  Google Scholar 

  18. H.I. Hsiang, L.F. Fan, J.J. Hung, J. Magn. Magn. Mater. 490, 165532 (2019)

    Article  CAS  Google Scholar 

  19. N.A. Castro, F.J.G. Landgraf, Soft Magn. Mater. Conf. 1, 767–772 (2003)

    Google Scholar 

  20. E. Adler, Int. J. Powder Metall. 25, 319–335 (1989)

    CAS  Google Scholar 

  21. X.L. Tang, H. Zhang, H. Su, Z.Y. Zhong, F.M. Bai, IEEE Trans. Magn. 47, 4332–4335 (2011)

    Article  CAS  Google Scholar 

  22. H. Su, H. Zhang, X. Tang, B. Liu, Z. Zhong, Physica B 405, 4006–4009 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Ministry of Science and Technology, Taiwan (109-3111-8-006 -001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsing-I Hsiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsiang, HI., Chen, CH. & Chen, CC. Magnetic properties of FeSiCr alloy powder coils made by gel casting process. J Mater Sci: Mater Electron 32, 14584–14591 (2021). https://doi.org/10.1007/s10854-021-06017-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06017-y

Navigation