Skip to main content
Log in

Ferroelectric phase transitions in PbHPO4-type crystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The statistical retarded double-time temperature-dependent Green’s function method and modified two sublattice pseudospin lattice coupled mode model Hamiltonian by adding phonon anharmonic interactions, extra spin–lattice interactions, direct spin–spin interaction and as well as an electric field terms have been used for the study of phase transition mechanism in PbHPO4-type crystals. The expressions for soft mode frequency, dielectric permittivity and dielectric loss tangent are derived for PbHPO4-type crystals. The modelled values of different physical parameters are fitted in the obtained theoretical expressions. The temperature dependence of soft mode frequency, dielectric permittivity and loss tangent are obtained for PbHPO4, PbHAsO4, BaHPO4 and CaHPO4 crystals. Present results are in good agreement with experimental data for dielectric permittivity reported by Arend et al. The modified model Hamiltonian is suitable to explain transitions in PbHPO4-type crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T.J. Negran et al., Ferroelectrics 6(1), 179–182 (1974)

    Article  CAS  Google Scholar 

  2. H. Arend, R. Blinc, A. Kandusar, Ferroelectrics 13(1), 511–513 (1976)

    Article  CAS  Google Scholar 

  3. G. Burley, J. Res. National Bureau Stand. 60(1), 23 (1958)

    Article  CAS  Google Scholar 

  4. B. Brezina, M. Havrankova, K. Dusek, J. Cryst. Growth 34(2), 248–252 (1976)

    Article  CAS  Google Scholar 

  5. R. Blinc, H. Arend, A. Kanduser, Physica Status Solidi 74(2), 425–435 (1976)

    Article  CAS  Google Scholar 

  6. J. Kroupa et al., Ferroelectrics 21(1), 387–389 (1978)

    Article  CAS  Google Scholar 

  7. E.J. Kock, H. Happ, Physica Status Solidi (b) 97(1), 239–246 (1980)

    Article  CAS  Google Scholar 

  8. B.K. Chaudhuri, S. Ganguli, D. Nath, Phys. Rev. B 23(5), 2308 (1981)

    Article  CAS  Google Scholar 

  9. N. Ohno, D.J. Lockwood, J. Chem. Phys. 83(9), 4374–4381 (1985)

    Article  CAS  Google Scholar 

  10. R. Mizeris, J. Grigas, B. Brezina, Ferroelectrics 126(1), 133–137 (1992)

    Article  CAS  Google Scholar 

  11. K. Deguchi, J. Phys. Soc. Jpn. 65(12), 4076–4080 (1996)

    Article  CAS  Google Scholar 

  12. N. Kida et al., J. Electron Spectrosc. Relat. Phenomena 101, 603–606 (1999)

    Article  Google Scholar 

  13. I.R. Zachek et al., Physica B 452, 152–158 (2014)

    Article  CAS  Google Scholar 

  14. A.K. Rawat, A. Rawat, T.C. Upadhyay, Sri Lankan J. Phys. 17, 19–28 (2016)

    Article  Google Scholar 

  15. A. Rawat, T.C. Upadhyay, Int. J. Modern Phys. B 31(32), 1750260 (2017)

    Article  CAS  Google Scholar 

  16. S.K. Arora et al., Mater. Sci. Eng. B 77(1), 131–134 (2000)

    Article  Google Scholar 

  17. T.R. Trivedi et al., Cryst. Res. Technol. 35(5), 615–624 (2000)

    Article  CAS  Google Scholar 

  18. K.C. Hebbar, S.M. Dharmaprakash, P.M. Rao, J. Mater. Sci. Lett. 10(24), 1430–1432 (1991)

    Article  CAS  Google Scholar 

  19. S.K. Arora, T.R. Trivedi, V.A. Patel, Scripta Materiala 47(10), 643–647 (2002)

    Article  CAS  Google Scholar 

  20. D. Nallamuthu, P. Selvarajan, T.H. Freeda, Physica B 405(24), 4908–4913 (2010)

    Article  CAS  Google Scholar 

  21. E. Amraterz et al., Opt. Mater. 109, 110268 (2020)

    Article  Google Scholar 

  22. M. Catti, G. Ferraris, A. Filhol, Acta Crystallogr. Sect. B 33(4), 1223–1229 (1977)

    Article  Google Scholar 

  23. M. Catti, G. Ferraris, S.A. Mason, Acta Crystallogr. Sect. B 36(2), 254–259 (1980)

    Article  Google Scholar 

  24. B. Louati, K. Guidara, M. Gargouri, J. Alloys Compds 472(1–2), 347–351 (2009)

    Article  CAS  Google Scholar 

  25. X. Duan et al., Ceram. Int. 38(5), 4363–4367 (2012)

    Article  CAS  Google Scholar 

  26. S.Z. Ajabshir, M. Baladi, M.S. Niasari, Ultrasonics Sonochem. 72, 105420 (2021)

    Article  Google Scholar 

  27. S.Z. Ajabshir et al., Ultrasonics Sonochem. 71, 105376 (2021)

    Article  Google Scholar 

  28. S.Z. Ajabshir, M.M. Kamazani, Ceram. Int. 46(17), 26548–26556 (2020)

    Article  Google Scholar 

  29. S.Z. Ajabshir et al., Ceram. Int. 46(5), 6095–6107 (2020)

    Article  Google Scholar 

  30. S.Z. Ajabshir et al., J. Alloys Compds. 791, 792–799 (2019)

    Article  Google Scholar 

  31. S.Z. Ajabshir et al., Ceram. Int. 46(11), 17186–17196 (2020)

    Article  Google Scholar 

  32. S.Z. Ajabshir et al., Sep. Purif. Technol 248, 117062 (2020)

    Article  Google Scholar 

  33. S.Z. Ajabshir, Z. Salehi, M.S. Niasari, Ceram. Int. 44(4), 3873–3883 (2018)

    Article  Google Scholar 

  34. S.Z. Ajabshir, M.S. Morassaei, M.S. Niasari, Composit. Part B 167, 643–653 (2019)

    Article  Google Scholar 

  35. M.M. Kamazani et al., J. Mater. Sci. 31(20), 17332–17338 (2020)

    Google Scholar 

  36. S.A.H. Asil et al., Int. J. Hydrog. Energy 45(43), 22761–22774 (2020)

    Article  Google Scholar 

  37. R.A. Cowley, Adv. Phys. 12(48), 421–480 (1963)

    Article  CAS  Google Scholar 

  38. D.N. Zubarev, Soviet Phys. Uspekhi 3(3), 320 (1960)

    Article  Google Scholar 

  39. W. Cochran, J. Phys. Rev. Lett. 3(9), 412 (1959)

    Article  CAS  Google Scholar 

  40. R. Kubo, J. Phys. Soc. Jpn. 12(6), 570–586 (1957)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Professor S.C. Bhatt for kindly help in ferroelectric mechanism in LHP-type crystals and useful discussions and department of Physics, HNB Garhwal University, Srinagar (Garhwal) Uttarakhand, India for providing facilities and support in the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muzaffar Iqbal Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.I., Upadhyay, T.C. Ferroelectric phase transitions in PbHPO4-type crystals. J Mater Sci: Mater Electron 32, 14569–14583 (2021). https://doi.org/10.1007/s10854-021-06016-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06016-z

Navigation