Skip to main content
Log in

Tailoring the multiferroic properties in Ba0.85Ca0.15Zr0.1Ti0.9O3/La0.7Sr0.3MnO3 bilayer heterostructures using residual strain

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ba0.85Ca0.15Zr0.1Ti0.9O3/La0.7Sr0.3MnO3 (BCZT/LSMO) bilayer multiferroic heterostructures with different BCZT layer thickness are fabricated by pulsed laser deposition technique. Structural characterization of XRD and TEM reveals the epitaxial growth of the bilayer heterostructures, whose residual strain reduces with increasing thickness. The room temperature multiferroic characteristics of the bilayer heterostructures are demonstrated by the simultaneously observed ferroelectric and ferromagnetic properties as well as the magnetoelectric effect. Due to the varying residual strain, the multiferroic properties of the bilayer heterostructures show strong dependence on the BCZT layer thickness, which significantly improves with increasing thickness. The largest magnetoelectric coefficient with αE31 value of 355.2 mV/cm·Oe is achieved in BCZT/LSMO bilayer heterostructures with BCZT layer thickness of 150 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N.A. Spaldin, R. Ramesh, Advances in magnetoelectric multiferroics. Nat. Mater. 18, 203 (2019). https://doi.org/10.1038/s41563-018-0275-2

    Article  CAS  Google Scholar 

  2. W. Kleemann, Multiferroic and magnetoelectric nanocomposites for data processing. J. Phys. D Appl. Phys. 50, 223001 (2017). https://doi.org/10.1088/1361-6463/aa6c04

    Article  CAS  Google Scholar 

  3. C.W. Nan, J.M. Liu, Multiferroics: a beautiful but challenging multi-polar world. Nat. Sci. Rev. 6, 620–620 (2019). https://doi.org/10.1093/nsr/nwz093

    Article  CAS  Google Scholar 

  4. M. Bibes, A. Barthélémy, Multiferroics: Towards a magnetoelectric memory. Nat. Mater. 7, 425–426 (2008). https://doi.org/10.1093/nsr/nwz093

    Article  CAS  Google Scholar 

  5. Y. Wang, J. Li, D. Viehland, Magnetoelectrics for magnetic sensor applications: status, challenges and perspectives. Mater. Today 17, 269–275 (2014). https://doi.org/10.1016/j.mattod.2014.05.004

    Article  CAS  Google Scholar 

  6. N. Kumar, A. Shukla, N. Kumar, R.N.P. Choudhary, Design and development of bismuth ferrite based environmental friendly multiferroic for devices. Mater. Today Proc. 18, 638–646 (2019). https://doi.org/10.1016/j.matpr.2019.06.458

    Article  CAS  Google Scholar 

  7. C. Lu, M. Wu, L. Lin, J.M. Liu, Single-phase multiferroics: new materials, phenomena, and physics. Nat. Sci. Rev. 6, 653–668 (2019). https://doi.org/10.1093/nsr/nwz091

    Article  CAS  Google Scholar 

  8. M. Fiebig, T. Lottermoser, D. Meier, M. Trassin, The evolution of multiferroics. Nat. Rev. Mater. 1, 16046 (2016). https://doi.org/10.1038/natrevmats.2016.46

    Article  CAS  Google Scholar 

  9. H. Palneedi, V. Annapureddy, S. Priya, J. Ryu, Status and perspectives of multiferroic magnetoelectric composite materials and applications. Actuators 5, 9 (2016). https://doi.org/10.3390/act5010009

    Article  Google Scholar 

  10. W. Eerenstein, N. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759 (2006). https://doi.org/10.1038/nature05023

    Article  CAS  Google Scholar 

  11. M. Naveed-Ul-Haq, S. Webers, H. Trivedi, S. Salamon, H. Wende, M. Usman, A. Mumtaz, V.V. Shvartsman, D.C. Lupascu, Effect of substrate orientation on local magnetoelectric coupling in bi-layered multiferroic thin films. Nanoscale 10, 20618–20627 (2018). https://doi.org/10.1039/C8NR06041J

    Article  CAS  Google Scholar 

  12. S. Li, C. Wang, Q. Shen, L. Zhang, Enhanced dielectric properties in Ba0.85Ca0.15Zr0.10Ti0.90O3/La0.67Ca0.33MnO3 laminated composite. Script. Mater. 144, 40–43 (2018). https://doi.org/10.1016/j.scriptamat.2017.09.044

    Article  CAS  Google Scholar 

  13. C.S. Park, S. Priya, Cofired magnetoelectric laminate composites. J. Am. Ceram. Soc. 94, 1087–1095 (2011). https://doi.org/10.1111/j.1551-2916.2010.04213.x

    Article  CAS  Google Scholar 

  14. W.S. Rosa, M. Venet, Exploring the processing conditions to optimize the interface in 2–2 composites based on Pb(Zr, Ti)O3 and NiFe2O4. Ceram. Int. 42, 7980–7986 (2016). https://doi.org/10.1016/j.ceramint.2016.01.196

    Article  CAS  Google Scholar 

  15. Z. Chu, M. PourhosseiniAsl, S. Dong, Review of multi-layered magnetoelectric composite materials and devices applications. J. Phys. D Appl. Phys. 51, 243001 (2018). https://doi.org/10.1088/1361-6463/aac29b

    Article  CAS  Google Scholar 

  16. C.A. Fernandes Vaz, U. Staub, Artificial multiferroic heterostructures. J. Mater. Chem. C 1, 6731 (2013). https://doi.org/10.1039/C3TC31428F

    Article  CAS  Google Scholar 

  17. J.M. Hu, C.G. Duan, C.W. Nan, L.Q. Chen, Understanding and designing magnetoelectric heterostructures guided by computation: progresses, remaining questions, and perspectives. NPJ Comput. Mater. 3, 1–21 (2017). https://doi.org/10.1038/s41524-017-0020-4

    Article  CAS  Google Scholar 

  18. C. Deng, Y. Zhang, J. Ma, Y. Lin, C.W. Nan, Magnetoelectric effect in multiferroic heteroepitaxial BaTiO3-NiFe2O4 composite thin films. Acta Mater. 56, 405–412 (2008). https://doi.org/10.1016/j.actamat.2007.10.004

    Article  CAS  Google Scholar 

  19. D. Mukherjee, M. Hordagoda, P. Lampen, M.H. Phan, H. Srikanth, S. Witanachchi, P. Mukherjee, Simultaneous enhancements of polarization and magnetization in epitaxial Pb(Zr0.52Ti0.48)O3/La0.7Sr0.3MnO3 multiferroic heterostructures enabled by ultrathin CoFe2O4 sandwich layers. Phys. Rev. B 91, 054419 (2015). https://doi.org/10.1103/PhysRevB.91.054419

    Article  CAS  Google Scholar 

  20. T. Garg, A. Kulkarni, N. Venkataramani, Room-temperature magneto-dielectric response in multiferroic ZnFe2O4/PMN-PT bilayer thin films. Smart. Mater. Struct. 25, 085032 (2016). https://doi.org/10.1088/0964-1726/25/8/085032

    Article  CAS  Google Scholar 

  21. W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009). https://doi.org/10.1103/PhysRevLett.103.257602

    Article  CAS  Google Scholar 

  22. C. Vaz, J. Hoffman, Y. Segal, J. Reiner, R. Grober, Z. Zhang, C. Ahn, F.J. Walker, Origin of the magnetoelectric coupling effect in Pb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3 multiferroic heterostructures. Phys. Rev. Lett. 104, 127202 (2010). https://doi.org/10.1103/PhysRevLett.104.127202

    Article  CAS  Google Scholar 

  23. J.M. Yan, G.-Y. Gao, Y.K. Liu, F.F. Wang, R.K. Zheng, Electric-field control of electronic transport properties and enhanced magnetoresistance in La0.7Sr0.3MnO3/0.5BaZr0.2Ti0.8O3–0.5Ba0.7Ca0.3TiO3 lead-free multiferroic structures. J. Appl. Phys. 122, 134102 (2017). https://doi.org/10.1063/1.4990513

    Article  CAS  Google Scholar 

  24. S. Li, C. Wang, Q. Shen, L. Zhang, Residual Strain-mediated multiferroic properties of Ba0.85Ca0.15Zr0.9Ti0.1O3/La0.67Ca0.33MnO3 epitaxial heterostructures. ACS Appl. Mater. Int. 11, 30376–30383 (2019). https://doi.org/10.1021/acsami.9b05747

    Article  CAS  Google Scholar 

  25. K. Liang, P. Zhou, Z.J. Ma, Y.J. Qi, Z.H. Mei, T.J. Zhang, Multiferroic magnetoelectric coupling effect of bilayer La1.2Sr1.8Mn2O7/PbZr0.3Ti0.7O3 complex thin film. Phys. Lett. A 381, 1504–1509 (2017). https://doi.org/10.1016/j.physleta.2017.02.029

    Article  CAS  Google Scholar 

  26. R.J. Kennedy, P.A. Stampe, Reciprocal space mapping of epitaxial MgO films on SrTiO3. J. Cryst. Growth. 207, 200–205 (1999). https://doi.org/10.1016/S0022-0248(99)00371-1

    Article  CAS  Google Scholar 

  27. Q. Lin, D. Wang, Z.G. Chen, W. Liu, S. Li, Interfaces, Periodicity dependence of the built-in electric field in (Ba0.7Ca0.3)TiO3/Ba(Zr0.2Ti0.8)O3 ferroelectric superlattices. ACS Appl. Mater. Int. 7, 26301–26306 (2015). https://doi.org/10.1021/acsami.5b08943

    Article  CAS  Google Scholar 

  28. T.A. Berfield, R.J. Ong, D.A. Payne, N.R. Sottos, Residual stress effects on piezoelectric response of sol-gel derived lead zirconate titanate thin films. J. Alloy. Compd. 101, 24102–24100 (2007). https://doi.org/10.1063/1.2422778

    Article  CAS  Google Scholar 

  29. T. Li, K. Li, Z. Hu, Thickness and frequency dependence of magnetoelectric effect for epitaxial La0.7Sr0.3MnO3/BaTiO3 bilayer. J. Alloy. Compd. 592, 266–270 (2014). https://doi.org/10.1016/j.jallcom.2014.01.021

    Article  CAS  Google Scholar 

  30. D. Barrionuevo, N. Ortega, A. Kumar, R. Chatterjee, J. Scott, R.J. Katiyar, Thickness dependent functional properties of PbZr0.52Ti0.48O3/La0.67Sr0.33MnO3 heterostructures. J. Appl. Phys. 114, 234103 (2013). https://doi.org/10.1063/1.4848017

    Article  CAS  Google Scholar 

  31. R. Gupta, S. Chaudhary, R.K. Kotnala, Interfacial charge induced magnetoelectric coupling at BiFeO3/BaTiO3 bilayer interface. ACS Appl. Mater. Int. 7, 8472–8479 (2015). https://doi.org/10.1021/am509055f

    Article  CAS  Google Scholar 

  32. A.K. Tagantsev, G. Gerra, Interface-induced phenomena in polarization response of ferroelectric thin films. J. Appl. Phys. 100(5), 051607 (2006). https://doi.org/10.1063/1.2337009

    Article  CAS  Google Scholar 

  33. J. Wang, Z. Li, J. Wang, H. He, C.J. Nan, Effect of thickness on the stress and magnetoelectric coupling in bilayered Pb(Zr0.52Ti0.48)O3-CoFe2O4 films. J. Appl. Phys. 117, 044101 (2015). https://doi.org/10.1063/1.4906407

    Article  CAS  Google Scholar 

  34. J. Rani, V.K. Kushwaha, J. Kolte, C.V. Tomy, Strong magnetoelectric effect in pulse laser deposited [Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3]/CoFe2O4 bilayer thin film. J. Am. Ceram. Soc. 101, 5651–5658 (2018). https://doi.org/10.1111/jace.15882

    Article  CAS  Google Scholar 

  35. W. Chang, C.M. Gilmore, W.J. Kim, J.M. Pond, S.W. Kirchoefer, S.B. Qadri, D.B. Chirsey, J.S. Horwitz, Influence of strain on microwave dielectric properties of (Ba, Sr)TiO3 thin films. J. Appl. Phys. 87, 3044–3049 (2000). https://doi.org/10.1063/1.372297

    Article  CAS  Google Scholar 

  36. R.F. Brown, Effect of Two-dimensional mechanical stress on the dielectric properties of poled ceramic barium titanate and lead zirconate titanate. Can. J. Phys. 39, 741–753 (2011). https://doi.org/10.1139/p61-082

    Article  Google Scholar 

  37. C.H. Sim, A.Z.Z. Pan, J. Wang, Thickness and coupling effects in bilayered multiferroic CoFe2O4/Pb(Zr0.52Ti0.48)O3 thin films. J. Appl. Phys. 103, 475–496 (2008). https://doi.org/10.1063/1.2940014

    Article  CAS  Google Scholar 

  38. T. Li, F. Zhang, H. Fang, K. Li, F. Yu, The magnetoelectric properties of La0.7Sr0.3MnO3/BaTiO3 bilayers with various orientations. J. Alloy. Compd. 560, 167–170 (2013). https://doi.org/10.1016/j.jallcom.2013.01.143

    Article  CAS  Google Scholar 

  39. T. Li, Z. Hu, M. Zhang, K. Li, D. Yu, H. Yan, Frequency dependence of magnetoelectric effect in epitaxial La0.7Sr0.3MnO3/BaTiO3 bilayer film. Appl. Sur. Sci. 258, 4558–4562 (2012). https://doi.org/10.1016/j.apsusc.2012.01.027

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (51972252, 51567017), the Key Project of the Education Department of Guizhou Province (KY2021045), the Construction Project of Characteristic Key Laboratory in Guizhou Colleges and Universities (KY2021003), the National Science Foundation of Guizhou Province (ZK2021YB301) and the Fundamental Research Funds for the Central Universities (WUT: 2019III029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Rong.

Ethics declarations

Conflict of interest

The authors hereby formally declare no competing financial interests in the present article “Tailoring the multiferroic properties in Ba0.85Ca0.15Zr0.1Ti0.9O3/La0.7Sr0.3MnO3 bilayer heterostructures using residual strain”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, M., Su, R. & Wang, C. Tailoring the multiferroic properties in Ba0.85Ca0.15Zr0.1Ti0.9O3/La0.7Sr0.3MnO3 bilayer heterostructures using residual strain. J Mater Sci: Mater Electron 32, 26049–26058 (2021). https://doi.org/10.1007/s10854-021-06012-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06012-3

Navigation