Skip to main content
Log in

FIB micro-milled sapphire for GaN maskless epitaxial lateral overgrowth: a systematic study on patterning geometry

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A systematic study of the GaN epitaxial lateral overgrowth (ELO) of the focused ion beam (FIB) patterned sapphire substrate is presented. The FIB technology with its atom at a time removal principle is a flexible and high-resolution maskless processing technique, unique to fabricate trenches of the highest quality without surface damage, debris, and cracks, therefore, best suited to investigate the improvement of the maskless GaN ELO on the patterned sapphire. Arrays of the square (size varying from 1 × 1 μm2 to 5 × 5 μm2) and rectangular (size varying from 20 × 1 μm2 to 20 × 5 μm2) trenches with the inter-trench distance varying from 1 to 5 μm, aligned parallel/perpendicular to sapphire \(\langle \)11\(\overline{2}\)0\(\rangle \) direction were overgrown and investigated structurally and electrically using Raman scattering, atomic force microscopy (AFM), and electron beam induced current (EBIC). To find out the optimized ELO of the array, the threading dislocation density and the remaining strain in the ELO epilayer was analyzed. The epilayer improvement was demonstrated in a correlation between the trench size, the array geometry (the trench shape and inter-trench distance), and the epilayer thickness. A homogeneous overgrowth of the entire array was observed for the arrays of the largest trenches and the reduced inter-trench distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Kapolnek, S. Keller, R. Vetury, R.D. Underwood, P. Kozodoy, S.P. Den Baars, U.K. Mishra, Appl. Phys. Lett. 71(9), 1204 (1997)

    CAS  Google Scholar 

  2. A. Usui, H. Sunakawa, A. Sakai, A.A. Yamaguchi, Jpn. J Appl. Phys. 36(2), L899 (1997)

    CAS  Google Scholar 

  3. P. Gibart, Rep. Prog. Phys. 71, 667 (2004)

    Google Scholar 

  4. T.Y. Seong, J. Han, H. Amano, H. Morkoç (eds.), III-Nitride Based Light Emitting Diodes and Applications, vol. 126. Topics in Applied Physics (Springer, Dordrecht, Heidelberg, New York, London, 2013)

  5. T.M. Katona, M.D. Craven, P.T. Fini, J.S. Speck, S.P. Den Baars, Appl. Phys. Lett. 79(18), 2907 (2001)

    CAS  Google Scholar 

  6. D.M. Follstaedt, P.P. Provencio, N.A. Missert, C.C. Mitchell, D.D. Koleske, A.A. Allerman, C.I.H. Ashby, Appl. Phys. Lett. 81(15), 2758 (2002)

    CAS  Google Scholar 

  7. R.F. Davis, T. Gehrke, K.J. Linthicum, T.S. Zheleva, E.A. Preble, P. Rajagopal, C.A. Zorman, M. Mehregany, J. Cryst. Growth 225, 134 (2001)

    CAS  Google Scholar 

  8. K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, H. Miyake, Y. Iyechika, T. Maeda, J. Cryst. Growth 221, 316 (2000)

    CAS  Google Scholar 

  9. J. Wang, L.W. Guo, H.Q. Jia, Z.G. Xing, Y. Wang, J.F. Yan, N.S. Yu, H. Chen, J.M. Zhou, J. Cryst. Growth 290, 398 (2006)

    CAS  Google Scholar 

  10. S. Sano, T. Detchprohm, S. Mochizuki, S. Kamiyama, H. Amano, I. Akasaki, J. Cryst. Growth 235, 129 (2002)

    CAS  Google Scholar 

  11. L. Meng, W. Guohong, L. Hongjian, L. Zhicong, Y. Ran, W. Bing, L. Panpan, L. Jing, Y. Xiaoyan, W. Junxi, L. Jinmin, J. Semicond. 33(11), 113002 (2012)

    Google Scholar 

  12. C.I.H. Ashby, C.C. Mitchell, J. Han, N.A. Missert, P.P. Provencio, D.M. Follstaedt, G.M. Peake, L. Griego, Appl. Phys. Lett. 77(20), 3233 (2000)

    CAS  Google Scholar 

  13. C.H. Jeong, D.W. Kim, J.W. Bae, Y.J. Sung, J.S. Kwak, Y.J. Park, G.Y. Yeom, Mater. Sci. Eng. B 93(1–3), 60 (2002)

    Google Scholar 

  14. X. Jiang, Z. Chen, J. Li, S. Jiang, X. Kang, G. Zhang, Phys. Status Solidi C 11(3–4), 513 (2014)

    CAS  Google Scholar 

  15. E. Jelmakas, M. Alsys, P. Gečys, A. Kadys, G. Račiukaitis, S. Margueron, R. Tomašiūnas, Phys. Status Solidi A 211(12), 2848 (2014)

    CAS  Google Scholar 

  16. L. Giannuzzi (ed.), Introduction to Focused Ion Beams (Springer, Boston, MA, 2005)

    Google Scholar 

  17. Q. Wen, X. Wei, F. Jiang, J. Lu, X. Xu, Materials 12, 2871 (2020)

    Google Scholar 

  18. C.H. Ko, Y.K. Su, S.J. Chang, T.Y. Tsai, T.M. Kuan, W.H. Lan, J.C. Lin, W.J. Lin, Y.T. Cherng, J.B. Webb, Mater. Chem. Phys. 82, 55 (2003)

    CAS  Google Scholar 

  19. X. Zhang, P.D. Dapkus, D.H. Rich, I. Kim, J.T. Kobayashi, N.P. Kobayashi, J. Electr. Mater. 29(1), 10 (2000)

    Google Scholar 

  20. J. Wang, L.W. Guo, H.Q. Jia, Y. Wang, Z.G. Xing, W. Li, H. Chen, J.M. Zhou, J. Electrochem. Soc. 153(3), C182 (2006)

    CAS  Google Scholar 

  21. A. Cavallini, L. Polenta, A. Castaldini, Microelectron. Reliab. 50, 1398 (2010)

    CAS  Google Scholar 

  22. E.B. Yakimov, A.Y. Polyakov, Phys. Status Solidi (C) 12(8), 1132 (2015)

    CAS  Google Scholar 

  23. K. Jing, F. Meixin, C. Jin, W. Hui, W. Huaibing, Y. Hui, J. Semicond. 36(4), 043003 (2015)

    Google Scholar 

  24. H. Harima, J. Phys. Condens. Mater. 14, R967 (2002)

    CAS  Google Scholar 

  25. J.S. Song, H. Rho, M.S. Jeong, J.W. Ju, I.H. Lee, Phys. Rev. B 81, 233304 (2010)

    Google Scholar 

  26. T. Jiang, S.R. Xu, J.C. Zhang, Y. Xie, Y. Hao, Sci. Rep. 6, 19955 (2016)

    CAS  Google Scholar 

  27. F. Demangeot, J. Frandon, M.A. Renucci, O. Briot, B. Gil, R.L. Aulombard, MRS Internet J. Nitride Semicond. Res. 1, 23 (1996). https://doi.org/10.1557/S1092578300001952

    Article  Google Scholar 

  28. T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide, K. Manabe, J. Appl. Phys. 77(9), 4389 (1995)

    CAS  Google Scholar 

  29. J.I. Pankove, T.D. Moustakas (eds.), Gallium Nitride (GaN) II, vol. 57. Semiconductors and Semimetals (Academic Press, San Diego, CA, 1999)

  30. V.Y. Davydov, N.S. Averkiev, I.N. Goncharuk, D.K. Nelson, I.P. Nikitina, A.S. Polkovnikov, A.N. Smirnov, M.A. Jacobson, O.K. Semchinova, J. Appl. Phys. 82(10), 5097 (1997)

    CAS  Google Scholar 

  31. J.M. Wagner, F. Bechstedt, Appl. Phys. Lett. 77(3), 346 (2000)

    CAS  Google Scholar 

  32. F.C. Wang, C.L. Cheng, Y.F. Chen, C.F. Huang, C.C. Yang, Semicond. Sci. Technol. 22, 896 (2007)

    CAS  Google Scholar 

  33. T. Azuhata, T. Sota, K. Suzuki, S. Nakamura, J. Phys. Condens. Mater. 7, L129 (1995)

    CAS  Google Scholar 

  34. D.D. Manchon Jr., A.S. Barker Jr., P.J. Dean, R.B. Zetterstrom, Solid State Commun. 8(15), 1227 (1970)

    CAS  Google Scholar 

  35. V. Lemos, C.A. Argüello, R.C.C. Leite, Solid State Commun. 11(10), 1351 (1972)

    CAS  Google Scholar 

  36. A. Cingolani, M. Ferrara, M. Lugará, G. Scamarcio, Solid State Commun. 58(11), 823 (1986)

    CAS  Google Scholar 

  37. P. Perlin, C. Jauberthie-Carillon, J.P. Itie, A. San Miguel, I. Grzegory, A. Polian, Phys. Rev. B 45(1), 83 (1992)

    CAS  Google Scholar 

  38. S. Murugkar, R. Merlin, A. Botchkarev, A. Salvador, H. Morkoc, J. Appl. Phys. 77(11), 6042 (1995)

    CAS  Google Scholar 

  39. K. Karch, F. Bechstedt, Phys. Rev. B 56(12), 7404 (1997)

    CAS  Google Scholar 

  40. V.Y. Davydov, Y.E. Kitaev, I.N. Goncharuk, A.N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M.B. Smirnov, A.P. Mirgorodsky, R.A. Evarestov, Phys. Rev. B 58(19), 12899 (1998)

    CAS  Google Scholar 

  41. H. Siegle, G. Kaczmarczyk, L. Filippidis, A.P. Litvinchuk, A. Hoffmann, C. Thomsen, Phys. Rev. B 55(11), 7000 (1997)

    CAS  Google Scholar 

  42. L. Bergman, D. Alexson, P.L. Murphy, R.J. Nemanich, M. Dutta, M.A. Stroscio, C. Balkas, H. Shin, R.F. Davis, Phys. Rev. B 59(20), 12977 (1999)

    CAS  Google Scholar 

  43. G. Burns, F. Dacol, J.C. Marinace, B.A. Scott, E. Burstein, Appl. Phys. Lett. 22(8), 356 (1973)

    CAS  Google Scholar 

  44. J.I. Pankove, T.D. Moustakas (eds.), Gallium Nitride (GaN) I, vol. 50. Semiconductors and Semimetals (Academic Press, San Diego, CA, 1998)

  45. M. Benyoucef, M. Kuball, G. Hill, M. Wisnom, B. Beaumont, P. Gibart, Appl. Phys. Lett. 79(25), 4127 (2001)

    CAS  Google Scholar 

  46. T. Aggerstam, S. Lourdudoss, H.H. Radamson, M. Sjödin, P. Lorenzini, D.C. Look, Thin Solid Films 515, 705 (2006)

    CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the European Regional Development Fund according to the supported activity ”Research Projects Implemented by World-class Researcher Groups” under Measure No. 01.2.2-LMT-K-718 (Project code 01.2.2-LMT-K-718-01-0018). This work was done in the frame of the Vilnius University scientific program ”Perspective semiconductor structures for optoelectronics: development, investigation, and application”. The authors would like to thank Dr. D.Paipulas for laser microfabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Tomašiūnas.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 2879 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jelmakas, E., Kadys, A., Dmukauskas, M. et al. FIB micro-milled sapphire for GaN maskless epitaxial lateral overgrowth: a systematic study on patterning geometry. J Mater Sci: Mater Electron 32, 14532–14541 (2021). https://doi.org/10.1007/s10854-021-06010-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06010-5

Navigation