Skip to main content
Log in

Structural, vibrational and magnetic properties of Cu-substituted Mn0.5Zn0.5Fe2O4 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nanoparticles of quaternary Mn0.5−xCuxZn0.5Fe2O4 ferrite (x = 0.05, 0.15, 0.25, and 0.35) have been investigated to understand the Cu role in modifying their static and dynamic magnetic properties. The substitution of Cu2+ cation redistributes the other cations too. An attempt has been made to estimate the magnetization of the copper substituted ferrites based on redistributed cations. X-ray diffraction and Raman Spectroscopy investigations reveal that the as-prepared nanoparticles exhibit a single cubic mixed spinel phase. The Raman spectroscopy has established that Fe cations nearly 50% occupying at the tetrahedral site. The distribution of cations in Cu substituted Mn–Zn ferrite nanoparticles first estimated by Raman, Mossbauer, and X-ray photoelectron spectroscopic techniques have been subsequently refined by employing x-ray diffraction peaks intensity ratio method. The size of nearly spherical nanoparticles increases up to 22 nm with Cu2+ concentration. Both magnetization and the spin ordering temperature enhances with an increase in Cu2+ concentration (up to x = 0.25). The observed magnetization values match well with the estimated values. Lowering the line-width is about 620 Oe of FMR signal. The Lande’s g value increases up to 2.21 with an increase in Cu2+ cation concentration suggests that copper enhances magnetic dipolar interactions superexchange interaction; the latter is evidenced by Arrott’s plot also. Magnetocrystalline anisotropy decreases with copper, confirm by the lowering of Canting angle. These nanoparticles can find their applications in devices operating in microwave regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.M. Hessien, M.M. Rashad, K. El-Barawy, I.A. Ibrahim, Influence of manganese substitution and annealing temperature on the formation, microstructure and magnetic properties of Mn–Zn ferrites. J. Magn. Magn. Mater. 320(9), 1615–1621 (2008)

    Article  CAS  Google Scholar 

  2. M. Sertkol, Y. Koseoglu, A. Baykal, H. Kavas, M.S. Toprak, Synthesis and magnetic characterization of Zn0.7Ni0.3Fe2O4 nanoparticles via microwave-assisted combustion route. J. Magn. Magn. Mater. 322, 866–871 (2010)

    Article  CAS  Google Scholar 

  3. S.E. Sandler, B. Fellows, O.T. Mefford, Best practices for characterization of magnetic nanoparticles for biomedical applications. Anal. Chem. 91, 14159–14169 (2019)

    Article  CAS  Google Scholar 

  4. V.F. Cardoso, A. Francesko, C. Ribeiro, P. Martins, S. Lanceros-Mendez, Advances in magnetic nanoparticles for biomedical applications. Adv. Healthc. Mater. 7(5), 1700845 (2018)

    Article  Google Scholar 

  5. J. Frenkel, J. Doefman, Spontaneous and induced magnetisation in ferromagnetic bodies. Nature 126, 274–275 (1930)

    Article  Google Scholar 

  6. A. Rostamnejadi, H. Salmati, P. Kameli, H. Ahmadvand, Superparamagnetic behavior of La0.67Sr0.33MnO3 nanoparticles prepared via sol–gel method. J. Magn. Magn. Mater. 321, 3126–3131 (2009)

    Article  CAS  Google Scholar 

  7. B.D. Cullity, Elements of X-Ray Diffraction (Addison, Wesley, 1967).

    Google Scholar 

  8. T. Preethi, C. Deepika, T. Shilpa, B. Nikhil, T. Atul, A review on MnZn ferrites: synthesis, characterization and applications. Ceram. Int. 46, 15740–15763 (2020)

    Article  Google Scholar 

  9. T. Suneetha, S.C. Kashyap, S.K. Sharma, V.R. Reddy, Micro Raman Mossbauer and magnetic studies of manganese substituted zinc ferrite nanoparticles: role of Mn. J. Phys. Chem. Solids 91, 136–144 (2015)

    Google Scholar 

  10. G. Kogias, V. Tsakaloudi, P. Van der Valk, V. Zaspalis, Improvement of the properties of MnZn ferrite power cores through improvements on the microstructure of the compacts. J. Magn. Magn. Mater. 324, 235–241 (2012)

    Article  CAS  Google Scholar 

  11. S.F. Wang, Y.J. Chiang, Y.F. Hsu, C.H. Chen, Effects of additives on the loss characteristics of Mn–Zn ferrite. J. Magn. Magn. Mater. 365, 119–125 (2014)

    Article  CAS  Google Scholar 

  12. R. Pandit, K.K. Sharma, P. Kaur, R. Kumar, Cation distribution controlled dielectric, electric, electrical and magnetic behavior of In3+ substituted cobalt ferrites synthesized via solid-state reaction technique. Mater. Chem. Phys. 148, 988–999 (2014)

    Article  CAS  Google Scholar 

  13. L. Li, X. Tu, L. Peng, X. Zhu, Structure and static magnetic properties of Zr-substituted NiZn ferrite thin films synthesized by sol–gel process. J. Alloys Compd. 545, 67–69 (2012)

    Article  CAS  Google Scholar 

  14. V.T. Zaspalis, E. Eleftheriou, The effect of TiO2 on the magnetic power losses and electrical resistivity of polycrystalline MnZn-ferrites. J. Phys. D 38, 2156 (2005)

    Article  CAS  Google Scholar 

  15. J. Xu, D.H. Ji, Z.Z. Li, W.H. Qi, G.D. Tang, Z.F. Shang, X.Y. Zhang, Magnetic moments of Ti cations in Ti-doped Ni0.68Fe2.32O4 spinel ferrites. J. Alloy. Compd. 619, 228–234 (2015)

    Article  CAS  Google Scholar 

  16. K.Q. Jiang, K.K. Li, C.H. Peng, Y. Zhu, Effect of multi-additives on the microstructure and magnetic properties of high permeability Mn–Zn ferrite. J. Alloys Compd. 541, 472–476 (2012)

    Article  CAS  Google Scholar 

  17. B. Sun, F.G. Chen, W.D. Yang, H.Q. Shen, D. Xie, Effects of nano-TiO2 and normal size TiO2 additions on the microstructure and magnetic properties of manganese-zinc power ferrites. J. Magn. Magn. Mater. 349, 180–187 (2014)

    Article  CAS  Google Scholar 

  18. L. Li, Z. Lan, Z. Yu, K. Sun, Z.Y. Xu, Effects of Co-substitution on wide temperature ranging characteristic of electromagnetic properties in MnZn ferrites. J. Alloys Compd. 476, 755–759 (2009)

    Article  CAS  Google Scholar 

  19. W.D. Yang, Y.G. Wang, Effects of NiO addition on the microstructure elemental distribution and magnetic properties of Mn–Zn power ferrites. J. Alloy Compd. 625, 291–295 (2015)

    Article  CAS  Google Scholar 

  20. J.D. Richard, Tilley, Understanding Solids: The Science of Materials, 2nd edn. (Wiley, Hoboken, 2013).

    Google Scholar 

  21. T.T. Ahmed, I.Z. Rahman, M.A. Rahman, Study on the properties of the copper substituted NiZn ferrites. J. Mater. Process. Technol. 153, 797–803 (2004)

    Article  Google Scholar 

  22. I.Z. Rahman, T.T. Ahmed, A study on Cu substituted chemically processed Ni–Zn–Cu ferrites. J. Magn. Magn. Mater. 290–291, 1576–1579 (2005)

    Article  Google Scholar 

  23. E. Rezlescu, L. Sachelarie, P.D. Popa, N. Rezlescu, Effect of substitution of divalent ions on the electrical and magnetic properties of Ni–Zn–Me ferrites. IEEE Trans. Magn. 36, 3962–3967 (2000)

    Article  CAS  Google Scholar 

  24. P.S. Das, G.P. Singh, Structural magnetic and dielectric study of Cu substituted NiZn ferrite nanorod. J. Magn. Magn. Mater. 40, 1918–1924 (2016)

    Google Scholar 

  25. M.C. Dimiri, A. Verma, S.C. Kashyap, D.C. Dube, O.P. Thakur, C. Prakash, Structural, dielectric and magnetic properties of NiCuZn ferrite grown by citrate precursor method. J. Mater. Sci. Eng. B 133, 42–48 (2006)

    Article  Google Scholar 

  26. M.C. Dimri, S.C. Kashyap, D.C. Dube, High frequency behaviour of low temperature sintered polycrystalline NiCuZn ferrites and their composite thick films Phys. Status Solidi A 207(2), 396–400 (2010)

    Article  CAS  Google Scholar 

  27. P.P. Hankare, U.B. Sankpal, R.P. Patil, A.V. Jadhav, K.M. Garadkar, B.K. Chougule, Magnetic and dielectric studies of nanocrystalline zinc substituted Cu–Mn ferritesm. J. Magn. Magn. Mater. 323, 389–393 (2011)

    Article  CAS  Google Scholar 

  28. X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, Effect of Mn substitution on the magnetic properties of MgCuZn ferrites. J. Magn. Magn. Mater. 251, 316–322 (2002)

    Article  CAS  Google Scholar 

  29. M. Arifuzzaman, M. Belalhossen, Effect of Cu substituion on structural and electrical transport properites of Ni–Cd nanoferrite. Results Phys. 16, 102824 (2020)

    Article  Google Scholar 

  30. D. Vekatesh, B.B.V.S.V. Prasad, K.V. Ramesh, M.N.V. Ramesh, Magnetic properties of Cu2+ Substituted Ni–Zn nano crystalline ferrites synthesized in citrate-gel route. J. Inorg. Organomet. Polym Mater. 30, 2057–2066 (2020)

    Article  Google Scholar 

  31. M.M. Haque, M. Huq, M.A. Hakim, Densification magnetic and dielectric behaviour of Cu-substituted Mg–Zn ferrites. Mater. Chem. Phys. 112, 580–586 (2008)

    Article  CAS  Google Scholar 

  32. M.M. Haque, M. Huq, M.A. Hakim, Effect of Cu for Mn on the magnetic properties of Mn–Zn ferrites. Indian J. Phys. 78, 397–400 (2004)

    Google Scholar 

  33. J. Azadmanjiri, Preparation of Mn–Zn ferrite nanoparticles from chemical sol–gel combustion method and the magnetic properties after sintering. J. Non-Crystall. Solids 353, 4170–4173 (2010)

    Article  Google Scholar 

  34. S. Zinatloo-Ajabshira, M.S. Morassaeib, O. Amiric, M. Salavati-Niasarib, L.K. Foongd, Nd2Sn2O7 nanostructures: green synthesis and characterization using date palm extract, a potential electrochemical hydrogen storage material. Ceram. Int. 46, 17186–17196 (2020)

    Article  Google Scholar 

  35. M.S. Morassaei, S. Zinatloo-Ajabshir, M. Salavati-Niasari, Simple salt-assisted combustion synthesis of Nd2Sn2O7–SnO2 nanocomposites with different amino acids as fuel: an efficient photocatalyst for the degradation of methyl orange dye. J. Mater. Sci. 27, 11698–11706 (2016)

    CAS  Google Scholar 

  36. S. Zinatloo-Ajabshir, N. Ghasemian, M. Mousavi-Kamazani, Effect of zirconia on improving NOx reduction efficiency of Nd2Zr2O7 nanostructure fabricated by a new, facile and green sonochemical approach. Ultrason. Sonochem. 71, 105376 (2021)

    Article  CAS  Google Scholar 

  37. Y. Xuan, Q. Li, Synthesis and magnetic properties of Mn–Zn ferrite nanoparticles. J. Magn. Magn. Mater. 312, 464–469 (2007)

    Article  CAS  Google Scholar 

  38. L. Zhenyu, X. Guangliang, Z. Yalin, Microwave assisted low temperature synthesis of MnZn ferrite nanoparticles. Nanoscale Res. Lett. 2, 40 (2007)

    Article  Google Scholar 

  39. M.M. Rashad, M.I. Nasr, Controlling the microstructure and magnetic properties of Mn–Zn ferrites nanopowders synthesized by co-precipitation method. Electron. Mater. Lett. 8(3), 325–329 (2012)

    Article  CAS  Google Scholar 

  40. S.M. Patange, S.E. Shirsath, B.G. Toksha, S.S. Jadhav, S.J. Shukla, Cation distribution by Rietveld spectral and magnetic studies of chromium-substituted nickel ferrites. Appl. Phys. A 95, 429–434 (2009)

    Article  CAS  Google Scholar 

  41. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32, 751–767 (1976)

    Article  Google Scholar 

  42. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Synthesis of pure nanocrystalline ZrO2 via a simple sonochemical assisted Route. J. Ind. Eng. Chem. 20, 3313–3319 (2014)

    Article  CAS  Google Scholar 

  43. N. Najmoddin, A. Beitollahi, H. Kavas, S.M. Mohseni, H. Rezaie, XRD cation distribution and magnetic properties of mesoporous Zn-substituted CuFe2O4. Ceram. Int. 40, 3619–3625 (2014)

    Article  CAS  Google Scholar 

  44. H. Furuhashi, M. Inagaki, S. Naka, Determination of cation distribution in spinels by X-ray diffraction method. J. Inorg. Nucl. Chem. 35, 3009–3014 (1973)

    Article  CAS  Google Scholar 

  45. F. Nakagomi, S.W. Silva, V.K. Garg, A. Oliveira, Influence of the Mg-content on the cation distribution in cubic MgxFe3−xO4 nanoparticles. Solid State Chem. 182, 2423–2429 (2009)

    Article  CAS  Google Scholar 

  46. R.K. Sharma, V. Sebastian, N. Lakshmi, K. Venugopalan, V.R. Reddy, A. Gupta, Variation of structural and hyperfine parameters in nanoparticles of Cr-substituted Co–Zn ferrites. Phys. Rev. B 75, 144419-1-144419–6 (2007)

    Article  Google Scholar 

  47. F. Braestrup, B.C. Hauback, K.K. Hansen, Temperature dependence of the cation distribution in ZnFe2O4 measured with high temperature neutron diffraction. J. Solid State Chem. 181, 2364–2369 (2008)

    Article  CAS  Google Scholar 

  48. K.E. Sickafus, J.M. Wills, N.W. Grimes, Spinel compounds: structure and property relations. J. Am. Ceram. Soc. 82, 3279–3292 (1999)

    Article  CAS  Google Scholar 

  49. T. Aghavnian, J.-B. Moussy, D. Stanescu, R. Belkhou, N. Jedrecy, H. Magnan, P. Ohresser, M.-A. Arrio, P. Sainctavit, A. Barbier, Determination of the cation site distribution of the spinel in multiferroic CoFe2O4/BaTiO3 layers by X-ray photoelectron spectroscopy. J. Electron. Spectrosc. 202, 16–21 (2015)

    Article  CAS  Google Scholar 

  50. C.M.B. Henderson, J.M. Charnock, D.A. Plant, Cation occupancies in Mg Co, Ni, Zn, Al ferrite spinels: a multi-element EXAFS study. J. Phys. 19, 076214-1-076214–25 (2007)

    Google Scholar 

  51. W.B. White, B.A. DeAngelis, Interpretation of the vibrational spectra of spinels. Spectrochim. Acta 23A, 985–995 (1967)

    Article  Google Scholar 

  52. J. Kreisel, G. Lucazeau, H. Vincent, Raman spectra and vibrational analysis of BaFe12O19 hexagonal ferrite. J. Solid State Chem. 137, 127–137 (1998)

    Article  CAS  Google Scholar 

  53. O.N. Shebanova, P. Lazor, Raman spectroscopic study of magnetite (FeFe2O4): a new assignment for the vibrational spectrum. Solid State Chem. 174, 424–430 (2003)

    Article  CAS  Google Scholar 

  54. K. Mohit, V.R. Gupta, N. Gupta, S.K. Rout, Structural and microwave characterization of Ni0.2CoxZn0.8−xFe2O4 for antenna applications. Ceram. Int. 40, 1575–1586 (2014)

    Article  CAS  Google Scholar 

  55. T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254, 2441–2449 (2008)

    Article  CAS  Google Scholar 

  56. X. Hu, J.C. Yu, J. Gong, Q. Li, G. Li, α-Fe2O3 Nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv. Mater. 19, 2324–2329 (2007)

    Article  CAS  Google Scholar 

  57. K. Wandelt, Photoemission studies of adsorbed oxygen and oxide layers. Surf. Sci. Rep. 2, 1–121 (1982)

    Article  CAS  Google Scholar 

  58. W.P. Wang, H. Yang, T. Xian, J.L. Jiang, XPS and Magnetic properties of CoFe2O4 nanoparticles synthesized by a polyacrylamide gel route. Mater. Trans. 53, 1586–1589 (2012)

    Article  CAS  Google Scholar 

  59. M. Lenglet, A. D’Huysser, J. Kasperek, J.P. Boulle, J. Durr, Characterization of the oxidation states of copper and manganese in some manganites by the analysis of the XPS spectrum X emission, and absorption thresholds. Mater. Res. Bull. 20, 745–757 (1986)

    Article  Google Scholar 

  60. S. Hufner, Photoelectron Spectroscopy (Springer, New York, 2003).

    Book  Google Scholar 

  61. A.B. Naik, S.A. Patil, J.I. Powar, X-ray and magnetization studies on Li–Cu mixed ferrites. J. Mater. Sci. Lett. 7, 1034–1036 (1988)

    Article  CAS  Google Scholar 

  62. T. Suneetha, S.C. Kashyap, S.K. Sharma, V.R. Reddy, Cation distribution in Ni-substituted Mn0.5Zn0.5Fe2O4 nanoparticles: a Raman Mössbauer X-ray diffraction and electron spectroscopy study. J. Mater. Sci. Eng. B 206, 69–78 (2016)

    Article  Google Scholar 

  63. U.B. Gawas, V.M.S. Verenkar, S.R. Barman, S.S. Meena, P. Bhatt, Synthesis of nanosize and sintered Mn0.3Ni0.3Zn0.4Fe2O4 ferrite and their structural and dielectric studies. J. Alloy. Compd. 555, 225–231 (2013)

    Article  CAS  Google Scholar 

  64. S. Bera, A.A.M. Prince, S. Velmurugan, P.S. Raghavan, R. Gopalan, G. Panneerselvam, S.V. Narasimhan, Formation of zinc ferrite by solid-state reaction and its characterization by XRD and XPS. J. Mater. Sci. 36, 5379–5384 (2001)

    Article  CAS  Google Scholar 

  65. Z.P. Chen, W.Q. Fang, High-yield synthesis and magnetic properties of ZnFe2O4 single crystal nanocubes in aqueous solution. J. Alloy. Compd. 550, 348–352 (2013)

    Article  CAS  Google Scholar 

  66. V.V.K. Mittal, S. Bera, R. Nithya, M.P. Srinivasan, S. Velmurugan, S.V. Narasimhan, Solid state synthesis of Mg–Ni ferrite and characterization by XRD and XPS. J. Nucl. Mater. 335, 302–310 (2004)

    Article  CAS  Google Scholar 

  67. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Physical Electronics Inc, Washington, 1992).

    Google Scholar 

  68. A. Francon, V. Zapf, Temperature dependence of magnetic anisotropy in nanoparticles of CoxFe3−xO4. J. Magn. Magn. Mater. 320, 709–713 (2008)

    Article  Google Scholar 

  69. A. Ahlawat, V.G. Sathe, V.R. Reddy, A. Gupta, Mossbauer Raman and X-ray diffraction studies of superparamagnetic NiFe2O4 nanoparticles prepared by sol–gel auto-combustion method. J. Magn. Magn. Mater. 323, 2049–2054 (2011)

    Article  CAS  Google Scholar 

  70. S. Dey, S.K. Dey, B. Ghosh, V.R. Reddy, S. Kumar, Structural microstructural magnetic and hyperfine characterization of nanosized Ni0.5Zn0.5Fe2O4 synthesized by high energy ball-milling method. Mater. Chem. Phys. 138, 833–842 (2013)

    Article  CAS  Google Scholar 

  71. A.R. Tanna, H.H. Joshi, Computer aided X-ray diffraction intensity analysis for spinels: hands-on computing experience. Int. Sch. Sci. Res. Innov. 7, 70–77 (2013)

    Google Scholar 

  72. R. Valenzuela, Ceramics (Cambridge University Press, Cambridge, 1994).

    Google Scholar 

  73. F. Alam, M.L. Rahman, B. Chandra Das, A.K.M. Akther Hossain, Effect of Cu2+ on structural, elastic and magnetic properties of nanostructured Mn–Zn ferrite prepared by a sol–gel auto-combustion method. Phys. B 594, 412329–412341 (2020)

    Article  CAS  Google Scholar 

  74. P. Dutta, P. Dey, T.K. Nath, Effect of nanometric grain size on room temperature magnetoimpedance, magnetoresistance and magnetic properties of La0.7Sr0.3MnO3 nanoparticles. J. Appl. Phys. 102, 073906-1-073906–8 (2007)

    Article  Google Scholar 

  75. M.M. Kothawale, R. Pednekar, S.S. Meena, Synthesis of superparamagnetic nanoparticle Ni0.50Zn0.50Fe2O4 using wet chemical method. J. Supercond. Nov. Magn. 27, 2829–2833 (2014)

    Article  CAS  Google Scholar 

  76. S.K. Sharma, R. Kumar, V.V.S. Kumar, S.N. Dolia, Size dependent magnetic behavior of nanocrystalline spinel ferrite Mg0.95Mn0.05Fe2O4. Indian J. Pure Appl. Phys. 45, 16–20 (2007)

    CAS  Google Scholar 

  77. P.E. Seiden, C.F. Kooi, J.M. Katz, Microwave properties of nonstoichiometric polycrystalline yttrium iron garnet. J. Appl. Phys. 31, 1291–1296 (1960)

    Article  CAS  Google Scholar 

  78. K. Lenz, H. Wende, W. Kuch, K. Baberschke, K. Nagy, A. Janossy, Two-magnon scattering and viscous Gilbert damping in ultrathin ferromagnets. Phys. Rev. B 73, 144424-1-144424–6 (2006)

    Article  Google Scholar 

  79. S. Geschwind, A.M. Clogston, Narrowing effect of dipole forces on inhomogeneously broadened lines. Phys. Rev. 108, 49–53 (1957)

    Article  CAS  Google Scholar 

  80. E. Schlomann, Spin-wave analysis of ferromagnetic resonance in polycrystalline ferrites. J. Phys. Chem. Solids 6, 242–256 (1958)

    Article  CAS  Google Scholar 

  81. R.S. Biasi, R.D. Souza Lopes, Magnetocrystalline anisotropy of NiCoFe2O4 nanoparticles. Ceram. Int. 42, 9315–9318 (2016)

    Article  Google Scholar 

  82. L. Gama, E.P. Hernandez, D.R. Cornejo, A.A. Costa, S.M. Rezende, R.H.G.A. Kiminami, A.C.F.M. Costa, Magnetic and structural properties of nanosize Ni–Zn–Cr ferrite particles synthesized by combustion reaction. J. Magn. Magn. Mater. 317, 29–33 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Author acknowledges the Department of Science and Technology, Government of India for financial support vide Reference No: SR/WOS-A/PM-115/2017 (G) under Women Scientist Scheme to carry out this work. The help received from the Indian Institute of Technology Bombay through the SAIF facility for EPR (FMR) measurement. The support from UGC-DAE CSR, Indore for Mössbauer measurements is also thankfully acknowledged. The Micro-Raman measurements were done at Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, United States. This work supported (research fellowship to Ms Suneetha T) by Indian Institute of Technology Delhi, New Delhi-110016, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Suneetha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suneetha, T., Rao, G.N. & Ramesh, T. Structural, vibrational and magnetic properties of Cu-substituted Mn0.5Zn0.5Fe2O4 nanoparticles. J Mater Sci: Mater Electron 32, 14420–14436 (2021). https://doi.org/10.1007/s10854-021-06002-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06002-5

Navigation