Skip to main content
Log in

Effect of the functional group of polyethylene glycol on the characteristics of copper pillars obtained by electroplating

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Five polyethylene glycol (PEG)-based compounds with varying terminal functional groups were investigated as suppressors to investigate the effect of different terminal functional groups on the ability of PEG-based suppressors to inhibit Cu pillar electroplating. The inhibition ability of the suppressors increased with increasing steric hindrance of the aromatic functional group and length of the alkyl group. PEG-based compounds bearing terminal functional groups with large steric hindrances significantly impeded the diffusion of electroplating accelerator, thus enhancing the inhibitory effect. When the molecular weight of PEG was less than 1000, possessing a terminal functional group had a greater effect on the inhibitory ability than increasing the molecular weight. The wetting ability of the electrolyte increased as the inhibitory ability of the suppressor increased. The significant steric effect of PEG p-(1,1,3,3-tetramethyl butyl)-phenyl ether was confirmed, which contributed to the convex shape of the Cu pillars and the growth of small-sized Cu grains. Conversely, the interaction between PEG and Cu electrode surface was weak. Thus, flat-top Cu pillars were obtained when PEG was used as the suppressor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P.C. Andricacos, C. Uzoh, J.O. Dukovic, J. Horkans, H. Deligianni, Damascene copper electroplating for chip interconnections. IBM J. Res. & Dev. 42, 567 (1998)

    Article  CAS  Google Scholar 

  2. T. Kobayashi, J. Kawasaki, K. Mihara, H. Honma, Via-filling using electroplating for build-up PCBs. Electrochim. Acta 47, 85 (2001)

    Article  CAS  Google Scholar 

  3. K. Kondo, T. Yonezawa, D. Mikami, T. Okubo, Y. Taguchi, K. Takahashi, D.P. Barkey, High-aspect-ratio copper-via-filling for three-dimensional chip stacking II. Reduced electrodeposition process time. J. Electrochem. Soc. 152, H173 (2005)

    Article  Google Scholar 

  4. B.-S. Lee, S.-B. Jung, J.W. Yoon, Enhancement of Cu pillar bumps by electroless Ni plating. Microelectron. Eng. 180, 52 (2017)

    Article  CAS  Google Scholar 

  5. L.-L. Li, C.J. Yang, Size control of copper grains by optimization of additives to achieve flat-top copper pillars through electroplating. J. Electrochem. Soc. 164, D315 (2017)

    Article  CAS  Google Scholar 

  6. H. Honma, Plating technology for electronics packaging. Electrochim. Acta 47, 75 (2001)

    Article  CAS  Google Scholar 

  7. Y. Shacham-Diamand, T. Osaka, M. Datta, T. Ohba, Advanced Nanoscale ULSI Interconnects: Fundamentals and Applications (Springer, Berlin, 2009).

    Book  Google Scholar 

  8. F. Wang, K. Zhou, Q. Zhang, Y. Le, W. Liu, Y. Wang, F. Wang, Effect of molecular weight and concentration of polyethylene glycol on throughsilicon via filling by copper. Microelectron. Eng. 251, 111003 (2019)

    Article  Google Scholar 

  9. K. Kondo, N. Yamakawa, Z. Tanaka, K. Hayashi, Copper damascene electrodeposition and additives. J. Electroanal. Chem. 559, 137 (2003)

    Article  CAS  Google Scholar 

  10. E. Delbos, L. Omnès, A. Etcheberry, Bottom-up filling optimization for efficient TSV metallization. Microelectron. Eng. 87, 514 (2010)

    Article  CAS  Google Scholar 

  11. W.-P. Dow, M.-Y. Yen, W.-B. Lin, S.-W. Ho, Influence of molecular weight of polyethylene glycol on microvia filling by copper electroplating. J. Electrochem. Soc. 152, C769 (2005)

    Article  Google Scholar 

  12. C. Gabrielli, P. Mocotéguy, H. Perrot, D. Nieto-Sanz, A. Zdunek, A model for copper deposition in the damascene process. Electrochim. Acta 51, 1462 (2006)

    Article  CAS  Google Scholar 

  13. Z. Yang, X. Wang, N. Li, Z. Wang, Design and achievement of a complete bottom-up electroless copper filling for sub-micrometer trenches. Electrochim. Acta 56, 3317 (2011)

    Article  CAS  Google Scholar 

  14. P.M. Vereecken, R.A. Binstead, H. Deliginni, P.C. Andricacos, The chemistry of additives in damascene copper plating. IBM J. Res. Dev. 49, 3 (2005)

    Article  CAS  Google Scholar 

  15. C. Wang, J. Zhang, P. Yang, B. Zhang, M. An, Through-hole copper electroplating using nitrotetrazolium blue chloride as a leveler. J. Electrochem. Soc. 160, D85 (2013)

    Article  CAS  Google Scholar 

  16. W.-P. Dow, C.-W. Liu, Evaluating the filling performance of a copper plating formula using a simple galvanostat method. J. Electrochem. Soc. 153, C190 (2006)

    Article  CAS  Google Scholar 

  17. S. Miura, H. Honma, Advanced copper electroplating for application of electronics. Surf. Coat. Technol. 91, 169–170 (2003)

    Google Scholar 

  18. K. Doblhofer, S. Wasle, D.M. Soares, K.G. Weil, G. Ertl, An EQCM study of the electrochemical copper(II)/copper(I)/copper system in the presence of PEG and chloride ions. J. Electrochem. Soc. 150, C657 (2003)

    Article  CAS  Google Scholar 

  19. M. Hasegawa, Y. Negishi, T. Nakanishi, T. Osaka, Effects of additives on copper electrodeposition in submicrometer trenches. J. Electrochem. Soc. 152, C221 (2005)

    Article  CAS  Google Scholar 

  20. Z.V. Feng, X. Li, A.A. Gewirth, Inhibition due to the interaction of polyethylene glycol, chloride, and copper in plating baths: a surface-enhanced Raman study. J. Phem. Chem. B 107, 9415 (2003)

    Article  CAS  Google Scholar 

  21. M. Yokoi, S. Konishi, T. Hayashi, Adsorption behavior of polyoxyethyleneglycole on the copper surface in an acid copper sulfate bath. Denki Kagaku oyobi Kogyo Butsuri Kagaku 52, 218 (1984)

    Article  CAS  Google Scholar 

  22. L. Zhang, Z.-Q. Liu, S.-W. Chen, Y.-D. Wang, W.-M. Long, Y.-H. Guo, S.-Q. Wang, G. Ye, W.-Y. Liu, Materials, processing and reliability of low temperature bonding in 3D chip stacking. J. Alloy. Compd. 750, 980 (2018)

    Article  CAS  Google Scholar 

  23. L. Qiu, A. Ikeda, K. Noda, S. Nakai, T. Asano, Room-temperature Cu microjoining with ultrasonic bonding of cone-shaped bump. Jpn. J. Appl. Phys. 52, 04CB10 (2013)

    Article  Google Scholar 

  24. A.J. Bard, L.R. Faulkner, Electrochemical Methods, Fundamentals and Applications,&Nbsp;Chapter 1, 2nd edn. (Wiley, New York, 2001).

    Google Scholar 

  25. J. Mendez, R. Akolkar, U. Landau, Polyether suppressors enabling copper metallization of high aspect ratio interconnects. J. Electrochem. Soc. 156, D474 (2009)

    Article  CAS  Google Scholar 

  26. W. Hayes, B.W. Greenland, Supramolecular Polymer Networks and Gels, Chapter 4 (Springer, Cham, 2015).

    Google Scholar 

  27. R.J. Robson, E.A. Dennis, The size, shape, and hydration of nonionic surfactant micelles. Triton X-100. J. Phys. Chem. 81, 1075 (1977)

    Article  CAS  Google Scholar 

  28. G. Behl, P. Kumar, M. Sikka, L. Fitzhenry, A. Chhikara, PEG-coumarin nanoaggregates as π–π stacking derived small molecule lipophile containing self-assemblies for anti-tumour drug delivery. J. Biomater. Sci. Polym. Ed. 29, 360 (2018)

    Article  CAS  Google Scholar 

  29. M. Dong, Y. Zhang, T. Hang, M. Li, Structural effect of inhibitors on adsorption and desorption behaviors during copper electroplating for through-silicon vias. Electrochim. Acta 372, 137907 (2021)

    Article  CAS  Google Scholar 

  30. W.-P. Dow, H.-S. Huang, M.-Y. Yen, H.-C. Huang, Influence of convection-dependent adsorption of additives on microvia filling by copper electroplating. J. Electrochem. Soc. 152, C425 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was partly supported by the Ministry of Science and Technology of Taiwan under Grant No. 103-2113-M-239-001-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu-Lin Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, LL., Yeh, HC. Effect of the functional group of polyethylene glycol on the characteristics of copper pillars obtained by electroplating. J Mater Sci: Mater Electron 32, 14358–14367 (2021). https://doi.org/10.1007/s10854-021-05998-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05998-0

Navigation