Skip to main content

Advertisement

Log in

Enhanced energy storage properties at phase boundary in Fe‐doped Ba(Zr0.04Ti0.96)O3 ceramics with a slush polar state

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The relationship between phase boundary and energy storage properties in x mol% Fe-doped Ba(Zr0.04Ti0.96)O3 (BZT4-xFe) ceramics was studied. The BZT4-xFe (x = 0 ~ 2) ceramics were fabricated via a conventional solid-state reaction method. The average grain size (ξ) is reduced from ~ 1.63 to ~ 1.23 μm with increasing Fe-doping content. X-ray diffraction (XRD) reveals that orthorhombic (O) and tetragonal (T) phases coexist at x = 0 ~ 0.8 and a mixing of O and cubic (C) phases was observed at x = 1 ~ 2. A slush polar state with the coexistence of O and T phases appeared near the O-T transition temperature (TO−T) in BZT4-xFe (x = 0 ~ 0.8) ceramics. A critical behavior can be observed in the BZT4-xFe ceramics. The O-T phase boundary with the slush polar state can increase the energy storage density Wrec in BZT4-xFe ceramics. The energy storage properties of BZT4-0.4Fe ceramics exhibit a good temperature, frequency, and fatigue stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Lead-free piezoceramics. Nature. 432, 81–84 (2004). https://doi.org/10.1038/nature03008

    Article  CAS  Google Scholar 

  2. T. Zheng, J. Wu, D. Xiao, J. Zhu, Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater Sci. 98, 552–624 (2018). https://doi.org/10.1016/j.pmatsci.2018.06.002

    Article  CAS  Google Scholar 

  3. J. Rödel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, D. Damjanovic, Perspective on the development of lead-free piezoceramics. J. Am. Ceram. Soc. 92, 1153–1177 (2009). https://doi.org/10.1111/j.1551-2916.2009.03061.x

    Article  CAS  Google Scholar 

  4. W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009). https://doi.org/10.1103/PhysRevLett.103.257602

    Article  CAS  Google Scholar 

  5. F. Cordero, F. Craciun, M. Dinescu, N. Scarisoreanu, C. Galassi, W. Schranz, V. Soprunyuk, Elastic response of (1-x)Ba(Ti0.8Zr0.2)O3-x(Ba0.7Ca0.3)TiO3 (x = 0.45–0.55) and the role of the intermediate orthorhombic phase in enhancing the piezoelectric coupling. Appl. Phys. Lett. 105, 232904 (2014). https://doi.org/10.1063/1.4903807

    Article  CAS  Google Scholar 

  6. P. Jaiban, P. Wannasut, R. Yimnirun, A. Watcharapasorn, Influences of acceptor dopants (Cu, Mg, Fe) on electrical and optical properties of Ba0.7Ca0.3TiO3 ceramics. Mater. Res. Bull. 118, 110501 (2019). https://doi.org/10.1016/j.materresbull.2019.110501

    Article  CAS  Google Scholar 

  7. P. Jaiban, M. Tongtham, P. Wannasut, N. Pisitpipathsin, O. Namsar, N. Chanlek, S. Pojprapai, R. Yimnirun, R. Guo, A.S. Bhalla, A. Watcharapasorn, Phase characteristics, microstructure, and electrical properties of (1-x)BaZr0.2Ti0.8O3-(x)(Ba0.7Ca0.3)0.985La0.01TiO3 ceramics. Ceram. Int. 45, 17502–17511 (2019). https://doi.org/10.1016/j.ceramint.2019.05.312

    Article  CAS  Google Scholar 

  8. P. Jaiban, A. Watcharapasorn, R. Yimnirun, R. Guo, A.S. Bhalla, Dielectric, ferroelectric and piezoelectric properties of (Ba0.7Ca0.3)Ti1 – xCuxO3–x ceramics. J. Alloys Compd. 759, 120–127 (2018). https://doi.org/10.1016/j.jallcom.2018.05.093

    Article  CAS  Google Scholar 

  9. P. Jaiban, A. Watcharapasorn, R. Yimnirun, R. Guo, A.S. Bhalla, Effects of donor and acceptor doping on dielectric and ferroelectric properties of Ba0.7Ca0.3TiO3 lead-free ceramics. J. Alloys Compd. 695, 1329–1335 (2017). https://doi.org/10.1016/j.jallcom.2016.10.274

    Article  CAS  Google Scholar 

  10. H. Cao, F. Bai, N. Wang, J. Li, D. Viehland, G. Xu, G. Shirane, Intermediate ferroelectric orthorhombic and monoclinic MB phases in [110] electric-field-cooled Pb(Mg1/3Nb2/3)O3-30 %PbTiO3 crystals. Phys. Rev. B 72, 064104 (2005). https://doi.org/10.1103/PhysRevB.72.064104

    Article  CAS  Google Scholar 

  11. I. Levin, E. Cockayne, V. Krayzman, J.C. Woicik, S. Lee, C.A. Randall, Local structure of Ba(Ti, Zr)O3 perovskite-like solid solutions and its relation to the band-gap behavior. Phys. Rev. B 83, 094122 (2011). https://doi.org/10.1103/PhysRevB.83.094122

    Article  CAS  Google Scholar 

  12. L. Dong, D.S. Stone, R.S. Lakes, Enhanced dielectric and piezoelectric properties of xBaZrO3-(1-x)BaTiO3 ceramics. J. Appl. Phys. 111, 084107 (2012). https://doi.org/10.1063/1.4705467

    Article  CAS  Google Scholar 

  13. S. Priya, K. Uchino, D. Viehland, Fe-substituted 0.92Pb(Zn1/3Nb2/3)O3-0.08PbTiO3 single crystals: a “hard” piezocrystal. Appl. Phys. Lett. 81, 2430–2432 (2002). https://doi.org/10.1063/1.1507831

    Article  CAS  Google Scholar 

  14. M. Gao, W. Ge, X. Li, H. Yuan, C. Liu, H. Zhao, Y. Ma, Y. Chang, Enhanced dielectric and energy storage properties in Fe-doped BCZT ferroelectric ceramics. Phys. Status Solid 217, 2000253 (2020). https://doi.org/10.1002/pssa.202000253

    Article  CAS  Google Scholar 

  15. L. Shi, B. Zhang, Q. Liao, L. Zhu, L. Zhao, D. Zhang, D. Guo, Piezoelectric properties of Fe2O3 doped BiYbO3-Pb(Zr, Ti)O3 high Curie temperature ceramics. Ceram. Int. 40, 11485–11491 (2014). https://doi.org/10.1016/j.ceramint.2013.10.043

    Article  CAS  Google Scholar 

  16. E. Erdem, K. Kiraz, M. Somer, R.-A. Eichel, Size effects in Fe3+-doped PbTiO3 nanocrystals-Formation and orientation of (Fe’Ti-VO••)• defect-dipoles. J. Eur. Ceram. Soc. 30, 289–293 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.04.034

    Article  CAS  Google Scholar 

  17. V. Porokhonskyy, D. Damjanovic, Separation of piezoelectric grain resonance and domain wall dispersion in Pb(Zr, Ti)O3 ceramics. Appl. Phys. Lett. 94, 212906 (2009). https://doi.org/10.1063/1.3147166

    Article  CAS  Google Scholar 

  18. Q. Liao, X. Chen, X. Chu, F. Zeng, D. Guo, Effect of Fe doping on the structure and electric properties of relaxor type BSPT-PZN piezoelectric ceramics near the morphotropic phase boundary. Sens. Actuat. A 201, 222–229 (2013). https://doi.org/10.1016/j.sna.2013.07.024

    Article  CAS  Google Scholar 

  19. K. Hao, W. Ge, Z. Ren, X. Liu, L. Luo, X. Li, H. Luo, D. Viehland, Combining effects of TiO6 octahedron rotations and random electric fields on structural and properties in Na0.5Bi0.5TiO3. J. Am. Ceram. Soc. 103, 3349–3360 (2020). https://doi.org/10.1111/jace.16986

    Article  CAS  Google Scholar 

  20. M.-K. Zhu, P.-X. Lu, Y.-D. Hou, X.-M. Song, H. Wang, H. Yan, Analysis of phase coexistence in Fe2O3-doped 0.2PZN-0.8PZT ferroelectric ceramics by raman scattering spectra. J. Am. Ceram. Soc. 89, 3739–3744 (2006). https://doi.org/10.1111/j.1551-2916.2006.01281.x

    Article  CAS  Google Scholar 

  21. G.-P. Du, Z.-J. Hu, Q.-F. Han, X.-M. Qin, W.-Z. Shi, Effects of niobium donor doping on the phase structures and magnetic properties of Fe-doped BaTiO3 ceramics. J. Alloys Compd. 492, L79–L81 (2010). https://doi.org/10.1016/j.jallcom.2009.12.031

    Article  CAS  Google Scholar 

  22. X. Qin, D. Shihua, S. Tianxiu, W. Hongni, Diffuse phase transition of Ba0.92Ca0.08(Ti0.82Zr0.18)O3 based ceramics. Ferroelectrics. 426, 282–289 (2012). https://doi.org/10.1080/00150193.2012.672042

    Article  CAS  Google Scholar 

  23. N. Vittayakorn, G. Rujijanagul, X. Tan, M.A. Marquardt, D.P. Cann, The morphotropic phase boundary and dielectric properties of the xPb(Zr1/2Ti1/2)O3-(1-x)Pb(Ni1/3Nb2/3)O3 perovskite solid solution. J. Appl. Phys. 96, 5103–5109 (2004). https://doi.org/10.1063/1.1796511

    Article  CAS  Google Scholar 

  24. L. Yang, B.A. Tyburski, F. Santos, M.K. D D, Endoh, T. Koga, D. Huang, Y. Wang, L. Zhu, Relaxor ferroelectric behavior from strong physical pinning in a poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene) random terpolymer. Macromolecules 47, 8119–8125 (2014). https://doi.org/10.1021/ma501852x

    Article  CAS  Google Scholar 

  25. H. Takenaka, I. Grinberg, S. Liu, A.M. Rappe, Slush-like polar structures in single-crystal relaxors. Nature. 546, 391–395 (2017). doi:https://doi.org/10.1038/nature22068

    Article  CAS  Google Scholar 

  26. H. Tao, H. Wu, Y. Liu, Y. Zhang, J. Wu, F. Li, X. Lyu, C. Zhao, D. Xiao, J. Zhu, S.J. Pennycook, Ultrahigh performance in lead-free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence. J. Am. Chem. Soc. 141, 13987–13994 (2019). https://doi.org/10.1021/jacs.9b07188

    Article  CAS  Google Scholar 

  27. J. Hao, W. Bai, W. Li, J. Zhai, Correlation between the microstructure and electrical properties in high-performance (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 30871, 1–9 (2012). https://doi.org/10.1111/j.1551-2916.2012.05146.x

    Article  CAS  Google Scholar 

  28. Y. Wang, S. Gao, T. Wang, J. Liu, D. Li, H. Yang, G. Hu, L. Kong, F. Wang, G. Liu, Structure, dielectric properties of novel Ba(Zr, Ti)O3 based ceramics for energy storage application. Ceram. Int. 46, 12080–12087 (2020). https://doi.org/10.1016/j.ceramint.2020.01.251

    Article  CAS  Google Scholar 

  29. S. Jiang, L. Zhang, G. Zhang, S. Liu, J. Yi, X. Xiong, Y. Yu, J. He, Y. Zeng, Effect of Zr:Sn ratio in the lead lanthanum zirconate stannate titanate anti-ferroelectric ceramics on energy storage properties. Ceram. Int. 39, 5571–5575 (2013). https://doi.org/10.1016/j.ceramint.2012.12.071

    Article  CAS  Google Scholar 

  30. D. Zheng, R. Zuo, Enhanced energy storage properties in La(Mg1/2Ti1/2)O3-modified BiFeO3-BaTiO3 lead-free relaxor ferroelectric ceramics within a wide temperature range. J. Eur. Ceram. Soc. 37, 413–418 (2017). https://doi.org/10.1016/j.jeurceramsoc.2016.08.021

    Article  CAS  Google Scholar 

  31. Z. Wang, J. Wang, X. Chao, L. Wei, B. Yang, D. Wang, Z. Yang, Synthesis, structure, dielectric, piezoelectric, and energy storage performance of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 ceramics prepared by different methods. J. Mater. Sci. 27, 5047–5058 (2016). https://doi.org/10.1007/s10854-016-4392-x

    Article  CAS  Google Scholar 

  32. H. Yang, F. Yan, Y. Lin, T. Wang, Novel strontium titanate-based lead-free ceramics for high-energy storage applications. ACS Sustain. Chem. Eng. 5, 10215–10222 (2017). https://doi.org/10.1021/acssuschemeng.7b02203

    Article  CAS  Google Scholar 

  33. A.K. Kalyani, A. Senyshyn, R. Ranjan, Polymorphic phase boundaries and enhanced piezoelectric response in extended composition range in the lead free ferroelectric BaTi1 – xZrxO3. J. Appl. Phys. 114, 014102 (2013). https://doi.org/10.1063/1.4812472

    Article  CAS  Google Scholar 

  34. W. Ge, J. Li, D. Viehland, Y. Chang, G.L. Messing, Electric-field-dependent phase volume fractions and enhanced piezoelectricity near the polymorphic phase boundary of (K0.5Na0.5)1–xLixNbO3 textured ceramics. Phys. Rev. B 83, 224110 (2011). https://doi.org/10.1103/PhysRevB.83.224110

    Article  CAS  Google Scholar 

  35. Z. Zhao, X. Li, H. Ji, Y. Dai, T. Li, Microstructure and electrical properties in Zn-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 piezoelectric ceramics. J. Alloys Compd. 637, 291–296 (2015). https://doi.org/10.1016/j.jallcom.2015.02.093

    Article  CAS  Google Scholar 

  36. S. Patel, N. Novak, The pyroelectric energy harvesting and storage performance around the ferroelectric/antiferroelectric transition in PNZST. J. Mater. Sci. 56, 1133–1146 (2020). https://doi.org/10.1007/s10853-020-05353-4

    Article  CAS  Google Scholar 

  37. Z. Sun, L. Li, J. Li, H. Zheng, W. Luo, Influence of Nb2O5 addition on dielectric properties and diffuse phase transition behavior of BaZr0.2Ti0.8O3 ceramics. Ceram. Int. 42, 10833–10837 (2016). https://doi.org/10.1016/j.ceramint.2016.03.212

    Article  CAS  Google Scholar 

  38. C. Kruea-In, G. Rujijanagul, Electrical properties and phase transition of Ba(Zr0.05Ti0.95)1–x(Fe0.5Ta0.5)xO3 ceramics. Mater. Res. Bull. 69, 36–40 (2015). https://doi.org/10.1016/j.materresbull.2015.01.027

    Article  CAS  Google Scholar 

  39. J. Fan, B. Yang, L. Wei, Z. Wang, B-cation effect on relaxor behavior and electric properties in Sr2NaNb5–xSbxO15 tungsten bronze ceramics. Ceram. Int. 42, 4054–4062 (2016). https://doi.org/10.1016/j.ceramint.2015.11.077

    Article  CAS  Google Scholar 

  40. M.-K. Zhu, P.-X. Lu, Y.-D. Hou, H. Wang, H. Yan, Effects of Fe2O3 addition on microstructure and piezoelectric properties of 0.2PZN-0.8PZT ceramics. J. Mater. Res. 20, 2670–2675 (2011). https://doi.org/10.1557/jmr.2005.0339

    Article  Google Scholar 

  41. S.J. Kuang, X.G. Tang, L.Y. Li, Y.P. Jiang, Q.X. Liu, Influence of Zr dopant on the dielectric properties and Curie temperatures of Ba(ZrxTi1–x)O3 (0 ≤ x ≤ 0.12) ceramics. Scr. Mater. 61, 68–71 (2009). https://doi.org/10.1016/j.scriptamat.2009.03.016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities JLU under 1018320174002, by the Provincial Natural Science Foundation of Jilin under Grant No. 20200201097JC, and by the National Natural Science Foundation of China under Grants No. 52032012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwei Ge.

Ethics declarations

Conflict of interest The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Zhang, Y., Wu, C. et al. Enhanced energy storage properties at phase boundary in Fe‐doped Ba(Zr0.04Ti0.96)O3 ceramics with a slush polar state. J Mater Sci: Mater Electron 32, 13972–13984 (2021). https://doi.org/10.1007/s10854-021-05973-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05973-9

Navigation