Skip to main content
Log in

Exploring the electrical transport properties of La0.67Ca0.33MnO3 at different sintering temperatures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The La0.67Ca0.33MnO3 polycrystalline ceramics were prepared by the co-precipitation method with ammonium carbonate as the precipitant and the influence of the sintering temperature on the electrical transport properties of the ceramics were investigated. XRD results show that the ceramic structures obtained are all perovskite structures, which belong to the Pnma space group. Scanning electron microscopy (SEM) photographs demonstrated that the average size of the grains with the sinter temperature increased from 5.78 μm at 1300 °C to 24.04 μm at 1475 °C. Meanwhile, when the sintering temperature reached 1450 °C, the TCR reached the maximal value (32.3%·K−1), which was much larger r than the TCR at 1350 °C. The theoretical model analysis of the data leads to the conclusion that the conductive mechanism of the low-temperature metallic region and the high-temperature insulating region is dominated by the grain boundary scattering effect and the small-polariton hopping (SPH), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Rozenberg, M. Auslender, A.I. Shames, Y.M. Mukovskii, E. Sominski, A. Gedanken, Specific effects of nanometer scale size on magnetic ordering in La1−xCaxMnO3 (x=0.1, 0.3 and 0.6) manganites. J. Non Cryst. Solids 354, 5282 (2008). https://doi.org/10.1016/j.jnoncrysol.2008.05.087

    Article  CAS  Google Scholar 

  2. Q. Zhou, M. Dai, R. Wang et al., Enhancement of magnetoresistance in Mn substituted La2/3Sr1/3Mn1−xZrxO3 granular system. Phys. B 371, 120 (2006). https://doi.org/10.1016/j.physb.2005.09.030

    Article  CAS  Google Scholar 

  3. S.P. Altintas, A. Amira, C. Terzioglu, Structural characterization and magneto electrical behavior of Sm doped La0.7Ca0.3MnO3 manganites. J. Supercond. Nov. Magn. 26, 1461 (2012). https://doi.org/10.1007/s10948-012-2065-4

    Article  CAS  Google Scholar 

  4. J. Ma, Y. Cai, W. Wang et al., Enhancement of temperature coefficient of resistivity in La0.67Ca0.33MnO3 polycrystalline ceramics. Ceram. Int. 40, 4963 (2014). https://doi.org/10.1016/j.ceramint.2013.10.105

    Article  CAS  Google Scholar 

  5. S. Vadnala, P. Pal, S. Asthana, Investigation of near room temperature magnetocaloric, magnetoresistance and bolometric properties of Nd0.5La0.2Sr0.3MnO3: Ag2O manganites. J. Mater. Sci. Mater. Electron. 27, 6156 (2016). https://doi.org/10.1007/s10854-016-4543-0

    Article  CAS  Google Scholar 

  6. N. Raju, D.R. Sree, S.S.K. Reddy et al., Nanosize effects on the magnetic field induced transitions in La0.67−xEuxCa0.33MnO3 perovskite manganite. J. Magn. Magn. Mater. 368, 308 (2014). https://doi.org/10.1016/j.jmmm.2014.05.029

    Article  CAS  Google Scholar 

  7. S. Zhao, X. Yue, X. Liu, Tuning room temperature T p and MR of La1-y(Cay-xSrx )MnO3 polycrystalline ceramics by Sr doping. Ceram Int. 43, 4594 (2017). https://doi.org/10.1016/j.ceramint.2016.12.121

    Article  CAS  Google Scholar 

  8. K. Navin, R. Kurchania, The effect of particle size on structural, magnetic and transport properties of La0.7Sr0.3MnO3 nanoparticles. Ceram Int. 44, 4973 (2018). https://doi.org/10.1016/j.ceramint.2017.12.091

    Article  CAS  Google Scholar 

  9. D.J. Singh, W.E. Pickett, Lattice effects in ferromagnetic manganite perovskites. J. Appl. Phys. 83, 7354 (1998). https://doi.org/10.1063/1.367678

    Article  CAS  Google Scholar 

  10. P. Zhang, T.L. Phan, S.C. Yu, Magnetocaloric Effect in La0.7Cd0.3MnO3, La0.7Ba0.3MnO3, and Nd0.7Sr0.3MnO3. J. Supercond. Nov. Magn. 25, 2727 (2011). https://doi.org/10.1007/s10948-011-1252-z

    Article  CAS  Google Scholar 

  11. J.C. Debnath, A.M. Strydom, Transport-entropy correlations in La0.7Ca0.3MnO3 manganite. Phys. B 432, 96 (2014). https://doi.org/10.1016/j.physb.2013.09.045

    Article  CAS  Google Scholar 

  12. Y. Zhou, X. Zhu, S. Li, Structure, magnetic, electrical transport and magnetoresistance properties of La0.67Sr0.33Mn1xFexO3(x=0-0.15) doped manganite coatings. Ceram Int. 43, 3679 (2017). https://doi.org/10.1016/j.ceramint.2016.11.210

    Article  CAS  Google Scholar 

  13. T.L. Phan, P.S. Tola, N.T. Dang, J.S. Rhyee, W.H. Shon, T.A. Ho, Tricritical behavior and Griffith phase in La1-xCaxMnO3 under high applied fields. J. Magn. Magn. Mater. 441, 290 (2017). https://doi.org/10.1016/j.jmmm.2017.05.088

    Article  CAS  Google Scholar 

  14. P.S. Solanki, R.R. Doshi, A. Ravalia et al., Transport studies on La0.8xPr0.2SrxMnO3 manganite films. Phys. B 465, 71 (2015). https://doi.org/10.1016/j.physb.2015.02.019

    Article  CAS  Google Scholar 

  15. V. Ferrari, J.M. Pruneda, E. Artacho, Density functionals and half-metallicity in La2/3Sr1/3MnO3. Phys. Status Solidi A 203, 1437 (2006). https://doi.org/10.1002/pssa.200566183

    Article  CAS  Google Scholar 

  16. G. Jung, V. Markovich, D. Mogilyanski, C. van der Beek, Y.M. Mukovskii, Ferromagnetic and twin domains in LCMO manganites. J. Magn. Magn. Mater. 290–291, 902 (2005). https://doi.org/10.1016/j.jmmm.2004.11.285

    Article  CAS  Google Scholar 

  17. F.L. Tang, X. Zhang, Y. Shao, Sr ion distribution and local structure in La1−xSrxMnO3. J. Phys. Condens. Matter 18, 5579 (2006). https://doi.org/10.1088/0953-8984/18/23/026

    Article  CAS  Google Scholar 

  18. J. Ma, M. Theingi, H. Zhang, X. Ding, Q. Chen, Structural and electrical characterization of La0.72Ca0.28MnO3 ceramic and thin films. Appl. Surf. Sci. 264, 225 (2013). https://doi.org/10.1016/j.apsusc.2012.09.177

    Article  CAS  Google Scholar 

  19. H.Y. Hwang, S.W. Cheong, P.G. Radaelli, M. Marezio, B. Batlogg, Lattice effects on the magnetoresistance in doped LaMnO3. Phys. Rev. Lett. 75, 914 (1995). https://doi.org/10.1103/PhysRevLett.75.914

    Article  CAS  Google Scholar 

  20. T. Geng, N. Zhang, Electronic structure of the perovskite oxides La1−xSrxMnO3. Mod. Phys. Lett. 351, 314 (2006). https://doi.org/10.1016/j.physleta.2005.10.095

    Article  CAS  Google Scholar 

  21. J. Sakai, N. Ito, S. Imai, Oxygen content of La1−xSrxMnO3−y thin films and its relation to electric-magnetic properties. J. Appl. Phys. (2006). https://doi.org/10.1063/1.2176323

    Article  Google Scholar 

  22. V.P.S. Awana, R. Tripathi, S. Balamurugan, H. Kishan, E. Takayama-Muromachi, Magneto-transport of high TCR (temperature coefficient of resistance) La2/3Ca1/3MnO3: Ag polycrystalline composites. Solid State Commun. 140, 410 (2006). https://doi.org/10.1016/j.ssc.2006.09.021

    Article  CAS  Google Scholar 

  23. R. Søndenå, P. Ravindran, S. Stølen, T. Grande, M. Hanfland, Electronic structure and magnetic properties of cubic and hexagonal SrMnO3. Phys. Rev. B (2006). https://doi.org/10.1103/PhysRevB.74.144102

    Article  Google Scholar 

  24. P. Nisha, S.S. Pillai, M.R. Varma, K.G. Suresh, Influence of cobalt on the structural, magnetic and magnetocaloric properties of La0.67Ca0.33MnO3. J. Magn. Magn. Mater 327, 189 (2013). https://doi.org/10.1016/j.jmmm.2012.09.029

    Article  CAS  Google Scholar 

  25. G.F. Wang, L.R. Li, Z.R. Zhao, X.Q. Yu, X.F. Zhang, Structural and magnetocaloric effect of Ln0.67Sr0.33MnO3(Ln=La, Pr and Nd) nanoparticles. Ceram. Int 40, 16449 (2014). https://doi.org/10.1016/j.ceramint.2014.07.154

    Article  CAS  Google Scholar 

  26. F. Jin, H. Zhang, Q. Chen, Improved Curie temperature and temperature coefficient of resistance (TCR) in La0.7Ca0.3-xSrxMnO3:Ag0.2 composites. J. Alloys Compd 747, 1027 (2018). https://doi.org/10.1016/j.jallcom.2018.03.117

    Article  CAS  Google Scholar 

  27. L. Li, H. Zhang, X. Liu et al., Structure and electromagnetic properties of La0.7Ca0.3-xKxMnO3 polycrystalline ceramics. Ceram. Int 45, 10558 (2019). https://doi.org/10.1016/j.ceramint.2019.02.120

    Article  CAS  Google Scholar 

  28. X.F. Song, G.J. Lian, G.C. Xiong, Small polaronic transport in oxygen-deficient La0.7Ca0.3MnO3-δthin films. Phys. Rev. B (2005). https://doi.org/10.1103/PhysRevB.71.214427

    Article  Google Scholar 

  29. J. Zhao, C. Liu, J. Li et al., Oxygen vacancy induced electronic structure variation in the La0.2Sr0.8MnO3 thin film. AIP Adv (2019). https://doi.org/10.1063/1.5088738

    Article  Google Scholar 

  30. D.R.S.B.K. Roul, S. Mohanty, A.K. Pradhan, Effect of high temperature sintering schedule for enhanced CMR properties of La0.67Ca0.33MnO3 close to room temperature. Mater. Chem. Phys 67, 267 (2001)

    Article  CAS  Google Scholar 

  31. J.S. Park, C.O. Kim, Y.P. Lee et al., Influence of grain size on the electronic and the magnetic properties of La0.7Ca0.3MnO3δ. J. Appl. Phys 96, 2033 (2004). https://doi.org/10.1063/1.1774264

    Article  CAS  Google Scholar 

  32. Y.B. Nian, J. Strozier, N.J. Wu, X. Chen, A. Ignatiev, Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. Phys Rev Lett 98, 146403 (2007). https://doi.org/10.1103/PhysRevLett.98.146403

    Article  CAS  Google Scholar 

  33. G.K. Venkataiah, D.C. Vithal, M. Rao, S.S. Bhat, S.V. Prasad, V. Subramanyam, S.V. Reddy, Effect of sintering temperature on electrical transport properties of La0.67Ca0.33MnO3. Phys. B 357, 370 (2005). https://doi.org/10.1016/j.physb.2004.12.001

    Article  CAS  Google Scholar 

  34. S.B. Li, C.B. Wang, H.X. Liu et al., Effect of sintering temperature on structural, magnetic and electrical transport properties of La0.67Ca0.33MnO3 ceramics prepared by Plasma Activated Sintering. Mater. Res. Bull 99, 73 (2018). https://doi.org/10.1016/j.materresbull.2017.10.049

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.11564021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingming Chen.

Ethics declarations

Conflict of interest

No conflict of interest exists in the submission of this manuscript, and manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, L., Li, Y., Yu, P. et al. Exploring the electrical transport properties of La0.67Ca0.33MnO3 at different sintering temperatures. J Mater Sci: Mater Electron 32, 14164–14173 (2021). https://doi.org/10.1007/s10854-021-05943-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05943-1

Navigation