Abstract
Room temperature 200 keV electron irradiation effects on the area retraction behavior presented by 6.75 nm thick Au thin films deposited over a self-standing SiO\(_{2}\)/silicon nitride membrane are investigated as a function of the irradiation fluence \(\mathrm {\Phi }\). The as-deposited films already contain discontinuities (further referred as voids). The area retraction is investigated via the void growth behavior considering irradiation and thermally induced surface atoms’ migration. The film’s coverage area \(A(\mathrm {\Phi })\) and void perimeter \(P(\mathrm {\Phi })\), obtained via transmission electron microscopy observations, allow for calculating the atomic displacement causing the area retraction. These data are compared with model calculations of irradiation and thermally induced atomic fluxes. The results demonstrate that the balance between the thermal and irradiation processes strongly depends on the choice of the surface thermal diffusivity values, which present large discrepancies in the literature. Our results suggest that irradiation-induced atomic displacements follow the same thermodynamic driving forces acting in thermal processes. The work also discloses a new method to investigate surface atoms’ behavior and promote microstructural modifications at room or lower temperatures.
This is a preview of subscription content, access via your institution.











Data availability
The data that support the ndings of this study are available from the corresponding author upon reasonable request.
References
Y. Kojima, T. Kato, Nanoparticle formation in Au thin films by electron-beam-induced dewetting. Nanotechnology 19(25), 255605 (2008)
F. Niekiel, P. Schweizer, S. Kraschewski, B. Butz, E. Spiecker, The process of solid-state dewetting of Au thin films studied by in situ scanning transmission electron microscopy. Acta Mater. 90, 118–132 (2015)
C.V. Thompson, Solid-state dewetting of thin films. Annu. Rev. Mater. Res. 42(1), 399–434 (2012)
J. Ye, C.V. Thompson, Templated solid-state dewetting to controllably produce complex patterns. Adv. Mater. 23(13), 1567–1571 (2011)
A. Breitling, D. Goll, Hard magnetic L10 FePt thin films and nanopatterns. J. Magn. Magn. Mater. 320(8), 1449–1456 (2008)
M.J. Lefferts, C. Wu, M.R. Castell, Electrical percolation through a discontinuous Au nanoparticle film. Appl. Phys. Lett. 112(25), 251602 (2018)
A.B. Tesler, B.M. Maoz, Y. Feldman, A. Vaskevich, I. Rubinstein, Solid-state thermal dewetting of just-percolated gold films evaporated on glass: development of the morphology and optical properties. J. Phys. Chem. C 117(21), 11337–11346 (2013)
A.L. Giermann, C.V. Thompson, Solid-state dewetting for ordered arrays of crystallographically oriented metal particles. Appl. Phys. Lett. 86(12), 121903 (2005)
D. Wang, P. Schaaf, Solid-state dewetting for fabrication of metallic nanoparticles and influences of nanostructured substrates and dealloying. Physica Status Solidi A 210(8), 1544–1551 (2013)
D. Gentili, G. Foschi, F. Valle, M. Cavallini, F. Biscarini, Applications of dewetting in micro and nanotechnology. Chem. Soc. Rev. 41(12), 4430–4443 (2012)
Y.J. Oh, C.A. Ross, Y.S. Jung, Y. Wang, C.V. Thompson, Cobalt nanoparticle arrays made by templated solid-state dewetting. Small 5(7), 860–865 (2009)
R.F. Egerton, R. McLeod, F. Wang, M. Malac, Basic questions related to electron-induced sputtering in the TEM. Ultramicroscopy 110(8), 991–997 (2010)
Y.D. Qu, X.L. Liand, X.Q. Kong, W.J. Zhang, Size-dependent cohesive energy, melting temperature, and Debye temperature of spherical metallic nanoparticles. Phys. Met. Metallogr. 118(6), 528–534 (2017)
Q.S. Mei, K. Lu, Melting and superheating of crystalline solids: from bulk to nanocrystals. Prog. Mater. Sci. 52(8), 1175–1262 (2007)
W. Qi, Nanoscopic thermodynamics. Acc. Chem. Res. 49(9), 1587–1595 (2016)
Tripathi B. Deepti, H. Kumar, A. Tripathi, S. Kumar, S.A. Khan, G.B.V.S. Lakshmi, A.B. Dey, G. Sharma, A. Gupta, D.K. Avasthi, Transformation of Au-Pd alloy nanoparticles to core-shell nanoparticles by electron irradiation. J. Alloys Compds. 832(15), 154944 (2020)
H. Gu, G. Li, C. Liu, F. Yuan, F. Han, L. Zhang, S. Wu, Considerable knock-on displacement of metal atoms under a low energy electron beam. Sci. Rep. 7(1), 184 (2017)
K. Li, F.S. Zhang, A novel approach for preparing silver nanoparticles under electron beam irradiation. J. Nanoparticle Res. 12(4), 1423–1428 (2010)
Y. Li, L. Zang, D.L. Jacobs, J. Zhao, X. Yue, C. Wang, In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles. Nat. Commun. 8, 14462 (2017)
S. Mohapatra, Y.K. Mishra, J. Ghatak, D.K. Avasthi, In-situ TEM observation of electron irradiation induced shape transition of elongated gold nanoparticles embedded in silica. Adv. Mater. Lett. 4(6), 444–448 (2013)
F.P. Luce, E. Oliviero, GdM Azevedo, D.L. Baptista, P.F.P. Fichtner, In-situ transmission electron microscopy growth of nanoparticles under extreme conditions. J. Appl. Phys. 119(3), 035901 (2016)
M.M. Timm, Z.E. Fabrim, C. Marin, D.L. Baptista, P.F.P. Fichtner, Electron irradiation effects on the nucleation and growth of Au nanoparticles in silicon nitride. J. Appl. Phys. 122(16), 165301 (2017)
B. Konrad, Z.E. Fabrim, P.F.P. Fichtner, Electron irradiation effects on Ag nanoparticles. J. Mater. Sci. (2021). https://doi.org/10.1007/s10853-020-05705-0
W.H. Qi, M.P. Wang, Size effect on the cohesive energy of nanoparticle. J. Mater. Sci. Lett. 21(22), 1743–1745 (2002)
X. Yu, Z. Zhan, The effects of the size of nanocrystalline materials on their thermodynamic and mechanical properties. Nanoscale Res. Lett. 9(1), 1–6 (2014)
M.A. Shandiz, Effective coordination number model for the size dependency of physical properties of nanocrystals. J. Phys. 20(32), 325237 (2008)
C.M. Müller, R. Spolenak, Dewetting of Au and AuPt alloy films: a dewetting zone model. J. Appl. Phys. 113(9), 094301 (2013)
M. Mayer, SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA. in 15th International Conference on the Application of Accelerators in Research and Industry, AIP Conference Proceedings, vol. 475 (1999), pp. 541–544
R.F. Egerton, P. Li, M. Malac, Radiation damage in the TEM and SEM. Micron 35(6), 399–409 (2004)
A.Y. Konobeyev, U. Fischer, Y.A. Korovin, S.P. Simakov, Evaluation of effective threshold diplacement energies and other data required for the calculation of advanced atomic displacement cross-sections. Nucl. Energy Technol. 3(3), 169–175 (2017)
D.J. Srolovitz, M.G. Goldiner, The Thermodynamics and Kinetics of film agglomeration. The Films Interface 47(3), 31–36 (1995)
W.W. Mullins, Theory of thermal grooving. J. Appl. Phys. 28(3), 333–339 (1957)
E. Jiran, C.V. Thompson, Capillary instabilities in thin films. J. Electron. Mater. 19(11), 1153–1160 (1990)
G. Antczak, G. Ehrlich, Surface Diffusion: Metals, Metal Atoms and Clusters (Cambridge University Press, Cambridge, 2010)
H. Göbel, Blanckenhagen Pv, A study of surface diffusion on gold with an atomic force microscope. Surf. Sci. 331–333, 885–890 (1995)
I. Beszeda, I.A. Szabó, E.G. Gontier-Moya, Morphological evolution of thin gold films studied by auger electron spectroscopy in beading conditions. Appl. Phys. A 78(7), 1079–1084 (2004)
E. Jiran, C.V. Thompson, Capillary instabilities in thin, continuous films. Thin Solid Films 208(1), 23–28 (1992)
D.E. Sanders, A.E. Depristo, Predicted diffusion rates on FCC (001) metal surfaces for adsorbate / substrate combinations of Ni, Cu, Rh, Pd, Ag, Pt, Au. Surf. Sci. 260(1), 116–128 (1992)
L. Reimer, H. Kohl, Transmission Electron Microscopy: Physics of Image Formation (Springer, New York, 2008)
L.C. Liu, S.H. Risbud, Real-time hot-stage high-voltage transmission electron microscopy precipitation of CdS nanocrystals in glasses: experiment and theoretical analysis. J. Appl. Phys. 76(8), 4576–4580 (1994)
Acknowledgements
We acknowledge the support from Center for Microscopy and Microanalysis, Ion Implantation Laboratory and Laboratory of Nanometric Conformation—UFRGS. This study was nuanced in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, and by Ministério da Ciência, Tecnologia e Inovações—Conselho Nacional de Desenvolvimento Cientíco e Tecnológico (CNPq) Grant No. 309375/2016-9.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conict of interest concerning funding sources or authorship.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
de Oliveira, F.S.M., Nogueira, M.J., Fabrim, Z.E. et al. Electron irradiation effects in Au thin films. J Mater Sci: Mater Electron 32, 13291–13304 (2021). https://doi.org/10.1007/s10854-021-05907-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10854-021-05907-5