Skip to main content

Electron irradiation effects in Au thin films

Abstract

Room temperature 200 keV electron irradiation effects on the area retraction behavior presented by 6.75 nm thick Au thin films deposited over a self-standing SiO\(_{2}\)/silicon nitride membrane are investigated as a function of the irradiation fluence \(\mathrm {\Phi }\). The as-deposited films already contain discontinuities (further referred as voids). The area retraction is investigated via the void growth behavior considering irradiation and thermally induced surface atoms’ migration. The film’s coverage area \(A(\mathrm {\Phi })\) and void perimeter \(P(\mathrm {\Phi })\), obtained via transmission electron microscopy observations, allow for calculating the atomic displacement causing the area retraction. These data are compared with model calculations of irradiation and thermally induced atomic fluxes. The results demonstrate that the balance between the thermal and irradiation processes strongly depends on the choice of the surface thermal diffusivity values, which present large discrepancies in the literature. Our results suggest that irradiation-induced atomic displacements follow the same thermodynamic driving forces acting in thermal processes. The work also discloses a new method to investigate surface atoms’ behavior and promote microstructural modifications at room or lower temperatures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Data availability

The data that support the ndings of this study are available from the corresponding author upon reasonable request.

References

  1. Y. Kojima, T. Kato, Nanoparticle formation in Au thin films by electron-beam-induced dewetting. Nanotechnology 19(25), 255605 (2008)

    Article  Google Scholar 

  2. F. Niekiel, P. Schweizer, S. Kraschewski, B. Butz, E. Spiecker, The process of solid-state dewetting of Au thin films studied by in situ scanning transmission electron microscopy. Acta Mater. 90, 118–132 (2015)

    Article  CAS  Google Scholar 

  3. C.V. Thompson, Solid-state dewetting of thin films. Annu. Rev. Mater. Res. 42(1), 399–434 (2012)

    Article  CAS  Google Scholar 

  4. J. Ye, C.V. Thompson, Templated solid-state dewetting to controllably produce complex patterns. Adv. Mater. 23(13), 1567–1571 (2011)

    Article  CAS  Google Scholar 

  5. A. Breitling, D. Goll, Hard magnetic L10 FePt thin films and nanopatterns. J. Magn. Magn. Mater. 320(8), 1449–1456 (2008)

    Article  CAS  Google Scholar 

  6. M.J. Lefferts, C. Wu, M.R. Castell, Electrical percolation through a discontinuous Au nanoparticle film. Appl. Phys. Lett. 112(25), 251602 (2018)

    Article  Google Scholar 

  7. A.B. Tesler, B.M. Maoz, Y. Feldman, A. Vaskevich, I. Rubinstein, Solid-state thermal dewetting of just-percolated gold films evaporated on glass: development of the morphology and optical properties. J. Phys. Chem. C 117(21), 11337–11346 (2013)

    Article  CAS  Google Scholar 

  8. A.L. Giermann, C.V. Thompson, Solid-state dewetting for ordered arrays of crystallographically oriented metal particles. Appl. Phys. Lett. 86(12), 121903 (2005)

    Article  Google Scholar 

  9. D. Wang, P. Schaaf, Solid-state dewetting for fabrication of metallic nanoparticles and influences of nanostructured substrates and dealloying. Physica Status Solidi A 210(8), 1544–1551 (2013)

    Article  CAS  Google Scholar 

  10. D. Gentili, G. Foschi, F. Valle, M. Cavallini, F. Biscarini, Applications of dewetting in micro and nanotechnology. Chem. Soc. Rev. 41(12), 4430–4443 (2012)

    Article  CAS  Google Scholar 

  11. Y.J. Oh, C.A. Ross, Y.S. Jung, Y. Wang, C.V. Thompson, Cobalt nanoparticle arrays made by templated solid-state dewetting. Small 5(7), 860–865 (2009)

    Article  CAS  Google Scholar 

  12. R.F. Egerton, R. McLeod, F. Wang, M. Malac, Basic questions related to electron-induced sputtering in the TEM. Ultramicroscopy 110(8), 991–997 (2010)

    Article  CAS  Google Scholar 

  13. Y.D. Qu, X.L. Liand, X.Q. Kong, W.J. Zhang, Size-dependent cohesive energy, melting temperature, and Debye temperature of spherical metallic nanoparticles. Phys. Met. Metallogr. 118(6), 528–534 (2017)

    Article  CAS  Google Scholar 

  14. Q.S. Mei, K. Lu, Melting and superheating of crystalline solids: from bulk to nanocrystals. Prog. Mater. Sci. 52(8), 1175–1262 (2007)

    Article  CAS  Google Scholar 

  15. W. Qi, Nanoscopic thermodynamics. Acc. Chem. Res. 49(9), 1587–1595 (2016)

    Article  CAS  Google Scholar 

  16. Tripathi B. Deepti, H. Kumar, A. Tripathi, S. Kumar, S.A. Khan, G.B.V.S. Lakshmi, A.B. Dey, G. Sharma, A. Gupta, D.K. Avasthi, Transformation of Au-Pd alloy nanoparticles to core-shell nanoparticles by electron irradiation. J. Alloys Compds. 832(15), 154944 (2020)

    Article  CAS  Google Scholar 

  17. H. Gu, G. Li, C. Liu, F. Yuan, F. Han, L. Zhang, S. Wu, Considerable knock-on displacement of metal atoms under a low energy electron beam. Sci. Rep. 7(1), 184 (2017)

    Article  Google Scholar 

  18. K. Li, F.S. Zhang, A novel approach for preparing silver nanoparticles under electron beam irradiation. J. Nanoparticle Res. 12(4), 1423–1428 (2010)

    Article  CAS  Google Scholar 

  19. Y. Li, L. Zang, D.L. Jacobs, J. Zhao, X. Yue, C. Wang, In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles. Nat. Commun. 8, 14462 (2017)

    Article  CAS  Google Scholar 

  20. S. Mohapatra, Y.K. Mishra, J. Ghatak, D.K. Avasthi, In-situ TEM observation of electron irradiation induced shape transition of elongated gold nanoparticles embedded in silica. Adv. Mater. Lett. 4(6), 444–448 (2013)

    Article  CAS  Google Scholar 

  21. F.P. Luce, E. Oliviero, GdM Azevedo, D.L. Baptista, P.F.P. Fichtner, In-situ transmission electron microscopy growth of nanoparticles under extreme conditions. J. Appl. Phys. 119(3), 035901 (2016)

    Article  Google Scholar 

  22. M.M. Timm, Z.E. Fabrim, C. Marin, D.L. Baptista, P.F.P. Fichtner, Electron irradiation effects on the nucleation and growth of Au nanoparticles in silicon nitride. J. Appl. Phys. 122(16), 165301 (2017)

    Article  Google Scholar 

  23. B. Konrad, Z.E. Fabrim, P.F.P. Fichtner, Electron irradiation effects on Ag nanoparticles. J. Mater. Sci. (2021). https://doi.org/10.1007/s10853-020-05705-0

    Article  Google Scholar 

  24. W.H. Qi, M.P. Wang, Size effect on the cohesive energy of nanoparticle. J. Mater. Sci. Lett. 21(22), 1743–1745 (2002)

    Article  CAS  Google Scholar 

  25. X. Yu, Z. Zhan, The effects of the size of nanocrystalline materials on their thermodynamic and mechanical properties. Nanoscale Res. Lett. 9(1), 1–6 (2014)

    Article  Google Scholar 

  26. M.A. Shandiz, Effective coordination number model for the size dependency of physical properties of nanocrystals. J. Phys. 20(32), 325237 (2008)

    Google Scholar 

  27. C.M. Müller, R. Spolenak, Dewetting of Au and AuPt alloy films: a dewetting zone model. J. Appl. Phys. 113(9), 094301 (2013)

    Article  Google Scholar 

  28. M. Mayer, SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA. in 15th International Conference on the Application of Accelerators in Research and Industry, AIP Conference Proceedings, vol. 475 (1999), pp. 541–544

  29. R.F. Egerton, P. Li, M. Malac, Radiation damage in the TEM and SEM. Micron 35(6), 399–409 (2004)

    Article  CAS  Google Scholar 

  30. A.Y. Konobeyev, U. Fischer, Y.A. Korovin, S.P. Simakov, Evaluation of effective threshold diplacement energies and other data required for the calculation of advanced atomic displacement cross-sections. Nucl. Energy Technol. 3(3), 169–175 (2017)

    Article  Google Scholar 

  31. D.J. Srolovitz, M.G. Goldiner, The Thermodynamics and Kinetics of film agglomeration. The Films Interface 47(3), 31–36 (1995)

    CAS  Google Scholar 

  32. W.W. Mullins, Theory of thermal grooving. J. Appl. Phys. 28(3), 333–339 (1957)

    Article  CAS  Google Scholar 

  33. E. Jiran, C.V. Thompson, Capillary instabilities in thin films. J. Electron. Mater. 19(11), 1153–1160 (1990)

    Article  CAS  Google Scholar 

  34. G. Antczak, G. Ehrlich, Surface Diffusion: Metals, Metal Atoms and Clusters (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  35. H. Göbel, Blanckenhagen Pv, A study of surface diffusion on gold with an atomic force microscope. Surf. Sci. 331–333, 885–890 (1995)

    Article  Google Scholar 

  36. I. Beszeda, I.A. Szabó, E.G. Gontier-Moya, Morphological evolution of thin gold films studied by auger electron spectroscopy in beading conditions. Appl. Phys. A 78(7), 1079–1084 (2004)

    Article  CAS  Google Scholar 

  37. E. Jiran, C.V. Thompson, Capillary instabilities in thin, continuous films. Thin Solid Films 208(1), 23–28 (1992)

    Article  CAS  Google Scholar 

  38. D.E. Sanders, A.E. Depristo, Predicted diffusion rates on FCC (001) metal surfaces for adsorbate / substrate combinations of Ni, Cu, Rh, Pd, Ag, Pt, Au. Surf. Sci. 260(1), 116–128 (1992)

    Article  CAS  Google Scholar 

  39. L. Reimer, H. Kohl, Transmission Electron Microscopy: Physics of Image Formation (Springer, New York, 2008)

    Google Scholar 

  40. L.C. Liu, S.H. Risbud, Real-time hot-stage high-voltage transmission electron microscopy precipitation of CdS nanocrystals in glasses: experiment and theoretical analysis. J. Appl. Phys. 76(8), 4576–4580 (1994)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from Center for Microscopy and Microanalysis, Ion Implantation Laboratory and Laboratory of Nanometric Conformation—UFRGS. This study was nuanced in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, and by Ministério da Ciência, Tecnologia e Inovações—Conselho Nacional de Desenvolvimento Cientíco e Tecnológico (CNPq) Grant No. 309375/2016-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo F. P. Fichtner.

Ethics declarations

Conflict of interest

The authors declare that they have no conict of interest concerning funding sources or authorship.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, F.S.M., Nogueira, M.J., Fabrim, Z.E. et al. Electron irradiation effects in Au thin films. J Mater Sci: Mater Electron 32, 13291–13304 (2021). https://doi.org/10.1007/s10854-021-05907-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05907-5