Skip to main content
Log in

An investigation into gamma radiation shielding parameters of the (Al:Si) and (Al+Na):Si-doped international simple glasses (ISG) used in nuclear waste management, deploying Phy-X/PSD and SRIM software

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nuclear power plants that produce sustainable energy are the most striking examples of generating carbon-free energy. However, nuclear power plants demand the safe management of nuclear waste. The radiation tests of the materials, which are used in successful waste management in nuclear power plants, must be carried out. In this study, the radiation interaction parameters were examined of International simple glasses (ISG) with superior properties, used in nuclear waste management. The gamma radiation shielding properties of the (Al:Si) and (Al + Na):Si-dopped ISG glasses were investigated using Photon Shielding and Dosimetry (Phy-X / PSD) software for the selected energy range. LAC, MAC, MFP, HVL, TVL, Zeff, Neff, Ceff Zeq, EBF, EABF and FNRCS calculations were applied to assess the radiation protection parameters by Phy-X/PSD software. In addition, MSP and PR (H1, He+2) values were calculated by SRIM software. Also, each obtained parameter provided us with so important information on radiation protection, and these methods have been used frequently in the literature. Substituting an atomic fraction of (Al:Si) with (Al + Na):Si resulted in a reduction of the total atomic cross-section of the glass, which lowered the MAC. The obtained results showed that the highest MAC value belong to ISG-A00N glass. The MAC value gradually decreased as the Al, Na and Si contents increased. Likewise, the HVL, TVL and MFP values changed coherent with this. Moreover, Zeff and Neff values were seen in the ISG-A00N sample to take the maximum values to each other inversely. The most effective glass sample turned out to be ISG-A00N glass at the mean free path penetration power of MSP and PR values. Computations were made for glasses with SiO2, Al2O3, B2O3, Na2O, CaO and ZrO2 content given with ISG-C, ISG-A00, ISG-A12, ISG-A22, ISG-A00N, ISG-A11N, ISG-A18N and ISG-A23N codes. When all the results were evaluated, ISG-A00N glass which has the highest Si and Ca contents and density was found to be the glass with the best radiation shielding feature. It is also noteworthy that this glass does not contain any Al component. As the results of the investigation, it was found out that such a small doped of the Si increases the radiation shielding feature of the glass. The obtained results have revealed that the ISG-A00N > ISG-A00 > ISG-C > ISG-A12 > ISG-A11N > ISG-A22 > ISG-A18N > ISG-A23N samples, in ascending order that attenuators for low energy radiations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M. Collin, M. Fournier, P. Frugier, T. Charpentier, M. Moskura, L. Deng, M. Ren, J. Du, S. Gin, Structure of International Simple Glass and properties of passivating layer formed in circumneutral pH conditions. Npj Mater. Degrad. 2, 1–12 (2018). https://doi.org/10.1038/s41529-017-0025-y

    Article  CAS  Google Scholar 

  2. T.C. Kaspar, J.V. Ryan, C.G. Pantano, J. Rice, C. Trivelpiece, N.C. Hyatt, C.L. Corkhill, C. Mann, R.J. Hand, M.A. Kirkham, C.L. Crawford, C.M. Jantzen, J. Du, X. Lu, M.T. Harrison, C. Cushman, M.R. Linford, N.J. Smith, Physical and optical properties of the International Simple Glass. Npj Mater. Degrad. (2019). https://doi.org/10.1038/s41529-019-0069-2

    Article  Google Scholar 

  3. M. Debure, L. De Windt, P. Frugier, S. Gin, P. Vieillard, Mineralogy and thermodynamic properties of magnesium phyllosilicates formed during the alteration of a simplified nuclear glass. J. Nucl. Mater. 475, 255–265 (2016). https://doi.org/10.1016/j.jnucmat.2016.04.008

    Article  CAS  Google Scholar 

  4. J.T. Reiser, X. Lu, B. Parruzot, H. Liu, T. Subramani, H. Kaya, R.M. Kissinger, J.V. Crum, J.V. Ryan, A. Navrotsky, S.H. Kim, J.D. Vienna, Effects of Al: Si and (Al + Na): Si ratios on the properties of the international simple glass, part I: Physical properties. J. Am. Ceram. Soc. 104, 167–182 (2021). https://doi.org/10.1111/jace.17449

    Article  CAS  Google Scholar 

  5. S. Peuget, M. Tribet, S. Mougnaud, S. Miro, C. Jégou, Radiations effects in ISG glass: from structural changes to long-term aqueous behavior. NPJ Mater. Degrad. 1, 150 (2018). https://doi.org/10.1038/s41529-018-0044-3

    Article  CAS  Google Scholar 

  6. X. Lu, J.T. Reiser, B. Parruzot, L. Deng, I.M. Gussev, J.C. Neuefeind, T.R. Graham, H. Liu, J.V. Ryan, S.H. Kim, N. Washton, M. Lang, J. Du, J.D. Vienna, Effects of Al: Si and (Al + Na): Si ratios on the properties of the international simple glass, part II: structure. J. Am. Ceram. Soc. 104, 183–207 (2021). https://doi.org/10.1111/jace.17447

    Article  CAS  Google Scholar 

  7. X. Lu, M. Ren, L. Deng, C.J. Benmore, J. Du, Structural features of ISG borosilicate nuclear waste glasses revealed from high-energy X-ray diffraction and molecular dynamics simulations. J. Nucl. Mater. 515, 284–293 (2019). https://doi.org/10.1016/j.jnucmat.2018.12.041

    Article  CAS  Google Scholar 

  8. T.L. Goût, M.T. Harrison, I. Farnan, Relating Magnox and international waste glasses. J. NonCryst. Solids. 524, 119647 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.119647

    Article  CAS  Google Scholar 

  9. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. (2020). https://doi.org/10.1016/j.radphyschem.2019.108496

    Article  Google Scholar 

  10. A.M. Abu El-Soad, M.I. Sayyed, K.A. Mahmoud, E. Şakar, E.G. Kovaleva, Simulation studies for gamma ray shielding properties of Halloysite nanotubes using MCNP-5 code. Appl. Radiat. Isot. 154, 1–6 (2019). https://doi.org/10.1016/j.apradiso.2019.108882

    Article  CAS  Google Scholar 

  11. J.F. Ziegler, Srim-2003. Nucl. Instrum. Methods Phys. Res. Sect. B 219–220, 1027–1036 (2004)

  12. V. Kuzmin, Range parameters of heavy ions in carbon calculated with first-principles potentials. Nucl. Instrum. Methods Phys. Res. Sect. B 249, 13–17 (2006). https://doi.org/10.1016/j.nimb.2006.03.012

    Article  CAS  Google Scholar 

  13. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM—the stopping and range of ions in matter. Nucl. Instruments Methods Phys. Res. Sect. B 268, 1818–1823 (2010). https://doi.org/10.1016/j.nimb.2010.02.091

    Article  CAS  Google Scholar 

  14. M. Guerette, L. Huang, In-situ Raman and Brillouin light scattering study of the international simple glass in response to temperature and pressure. J. NonCryst. Solids. 411, 101–105 (2015). https://doi.org/10.1016/j.jnoncrysol.2014.12.028

    Article  CAS  Google Scholar 

  15. X. Lu, R. Sun, L. Huang, J.V. Ryan, J.D. Vienna, J. Du, Effect of vanadium oxide addition on thermomechanical behaviors of borosilicate glasses: toward development of high crack resistant glasses for nuclear waste disposal. J. NonCryst. Solids. 515, 88–97 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.04.009

    Article  CAS  Google Scholar 

  16. S. Mohd Fadzil, P. Hrma, M.J. Schweiger, B.J. Riley, Liquidus temperature and chemical durability of selected glasses to immobilize rare earth oxides waste. J. Nucl. Mater. 465, 657–663 (2015). https://doi.org/10.1016/j.jnucmat.2015.06.050

    Article  CAS  Google Scholar 

  17. A. Aşkın, Evaluation of the radiation shielding capabilities of the Na2B4O7–SiO2–MoO3-Dy2O3 glass quaternary using Geant4 simulation code and Phy-X/PSD database. Ceram. Int. 46, 9096–9102 (2020). https://doi.org/10.1016/j.ceramint.2019.12.158

    Article  CAS  Google Scholar 

  18. Y. Al-Hadeethi, M.I. Sayyed, Using Phy-X/PSD to investigate gamma photons in SeO2–Ag2O–TeO2 glass systems for shielding applications. Ceram. Int. 46, 12416–12421 (2020). https://doi.org/10.1016/j.ceramint.2020.02.003

    Article  CAS  Google Scholar 

  19. Y.M. Aboudeif, M.S. Alqahtani, E.E. Massoud, I.S. Yaha, E. Yousef, An evaluation of the radiation protection characteristics of prototyped oxide glasses utilising Phy-X/PSD software. J. Instrum. (2020). https://doi.org/10.1088/1748-0221/15/08/P08005

    Article  Google Scholar 

  20. S.F. Olukotun, S.T. Gbenu, O.F. Oladejo, M.I. Sayyed, S.M. Tajudin, A.A. Amosun, O.G. Fadodun, M.K. Fasasi, Investigation of gamma ray shielding capability of fabricated clay-polyethylene composites using EGS5, XCOM and Phy-X/PSD. Radiat. Phys. Chem. 177, 109079 (2020). https://doi.org/10.1016/j.radphyschem.2020.109079

    Article  CAS  Google Scholar 

  21. S.A.M. Issa, M.I. Sayyed, A.M.A. Mostafa, G. Lakshminarayana, I.V. Kityk, Investigation of mechanical and radiation shielding features of heavy metal oxide based phosphate glasses for gamma radiation attenuation applications. J. Mater. Sci. Mater. Electron. 30, 12140–12151 (2019). https://doi.org/10.1007/s10854-019-01572-x

    Article  CAS  Google Scholar 

  22. K.M. Kaky, M.I. Sayyed, A.A. Ati, M.H.A. Mhareb, K.A. Mahmoud, S.O. Baki, M.A. Mahdi, Germanate oxide impacts on the optical and gamma radiation shielding properties of TeO2-ZnO-Li2O glass system. J. NonCryst. Solids. 546, 120272 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120272

    Article  CAS  Google Scholar 

  23. K.A. Mahmoud, M.I. Sayyed, O.L. Tashlykov, Comparative studies between the shielding parameters of concretes with different additive aggregates using MCNP-5 simulation code. Radiat. Phys. Chem. 165, 108426 (2019). https://doi.org/10.1016/j.radphyschem.2019.108426

    Article  CAS  Google Scholar 

  24. M. Kamislioglu, Research on the effects of bismuth borate glass system on nuclear radiation shielding parameters. Results Phys. 22, 103844 (2021). https://doi.org/10.1016/j.rinp.2021.103844

    Article  Google Scholar 

  25. S.A.M. Issa, A. Kumar, M.I. Sayyed, M.G. Dong, Y. Elmahroug, Mechanical and gamma-ray shielding properties of TeO2-ZnO-NiO glasses. Mater. Chem. Phys. 212, 12–20 (2018). https://doi.org/10.1016/j.matchemphys.2018.01.058

    Article  CAS  Google Scholar 

  26. M.I. Sayyed, A. Kumar, H.O. Tekin, R. Kaur, M. Singh, O. Agar, M.U. Khandaker, Evaluation of gamma-ray and neutron shielding features of heavy metals doped Bi2O3-BaO-Na2O-MgO-B2O3 glass systems. Prog. Nucl. Energy. 118, 103118 (2020). https://doi.org/10.1016/j.pnucene.2019.103118

    Article  CAS  Google Scholar 

  27. S.A.M. Issa, Effective atomic number and mass attenuation coefficient of PbO-BaO-B2O3 glass system. Radiat. Phys. Chem. 120, 33–37 (2016). https://doi.org/10.1016/j.radphyschem.2015.11.025

    Article  CAS  Google Scholar 

  28. J.E. Ngaile, C.B.S. Uiso, P. Msaki, R. Kazema, Use of lead shields for radiation protection of superficial organs in patients undergoing head CT examinations. Radiat. Prot. Dosimetry. 130, 490–498 (2008). https://doi.org/10.1093/rpd/ncn095

    Article  CAS  Google Scholar 

  29. S. Gowda, S. Krishnaveni, T. Yashoda, T.K. Umesh, R. Gowda, Photon mass attenuation coefficients, effective atomic numbers and electron densities of some thermoluminescent dosimetric compounds. Pramana J. Phys. 63, 529–541 (2004). https://doi.org/10.1007/BF02704481

    Article  CAS  Google Scholar 

  30. M. Kamislioglu, E.E. Altunsoy Guclu, H.O. Tekin, Comparative evaluation of nuclear radiation shielding properties of xTeO2 + (100–x)Li2O glass system. Appl. Phys. A (2020). https://doi.org/10.1007/s00339-020-3284-3

    Article  Google Scholar 

  31. J.M. Ziman, Solid state. Phys. Today. 21, 53–58 (1968). https://doi.org/10.1063/1.3034969

    Article  Google Scholar 

  32. M.J. and H. Trubey, D.K. Berger, Photon cross sections for endf/b-vi* (2008)

  33. Y. Harima, Y. Sakamoto, S. Tanaka, M. Kawai, Validity of the geometric-progression formula in approximating gamma-ray buildup factors. Nucl. Sci. Eng. 94, 24–35 (1986). https://doi.org/10.13182/NSE86-A17113

    Article  CAS  Google Scholar 

  34. L. Gerward, N. Guilbert, K. BjornJensen, H. Levring, X-ray absorption in matter. Reengineering XCOM. Radiat. Phys. Chem. 60, 23–24 (2001). https://doi.org/10.1016/S0969-806X(00)00324-8

    Article  CAS  Google Scholar 

  35. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, WinXCom—a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. 71, 653–654 (2004). https://doi.org/10.1016/j.radphyschem.2004.04.040

    Article  CAS  Google Scholar 

  36. P.S. Singh, T. Singh, P. Kaur, Variation of energy absorption buildup factors with incident photon energy and penetration depth for some commonly used solvents. Ann. Nucl. Energy. 35, 1093–1097 (2008). https://doi.org/10.1016/j.anucene.2007.10.007

    Article  CAS  Google Scholar 

  37. Y. Harima, An historical review and current status of buildup factor calculations and applications. Radiat. Phys. Chem. 41, 631–672 (1993). https://doi.org/10.1016/0969-806X(93)90317-N

    Article  CAS  Google Scholar 

  38. B. Oto, A. Gür, E. Kavaz, T. Çakır, N. Yaltay, Determination of gamma and fast neutron shielding parameters of magnetite concretes. Prog. Nucl. Energy. 92, 71–80 (2016). https://doi.org/10.1016/j.pnucene.2016.06.011

    Article  CAS  Google Scholar 

  39. C. All, A. Search, S. All, Search My Selection Search History, I (2020) 1–2.

  40. P. Kaur, K.J. Singh, S. Thakur, M. Kurudirek, Investigation of a competent non-toxic Bi2O3−Li2O−CeO2−MoO3−B2O3 glass system for nuclear radiation security applications. J. Non-Cryst. Solids (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120235

    Article  Google Scholar 

  41. H.O. Tekin, E.E. Altunsoy, E. Kavaz, M.I. Sayyed, O. Agar, M. Kamislioglu, Photon and neutron shielding performance of boron phosphate glasses for diagnostic radiology facilities. Results Phys. 12, 1457–1464 (2019). https://doi.org/10.1016/j.rinp.2019.01.060

    Article  Google Scholar 

  42. E. Kavaz, F.I. El-Agawany, H.O. Tekin, U. Perişanoğlu, Y.S. Rammah, Nuclear radiation shielding using barium borosilicate glass ceramics. J. Phys. Chem. Solids. (2020). https://doi.org/10.1016/j.jpcs.2020.109437

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kamislioglu.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 512 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamislioglu, M. An investigation into gamma radiation shielding parameters of the (Al:Si) and (Al+Na):Si-doped international simple glasses (ISG) used in nuclear waste management, deploying Phy-X/PSD and SRIM software. J Mater Sci: Mater Electron 32, 12690–12704 (2021). https://doi.org/10.1007/s10854-021-05904-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05904-8

Navigation