Skip to main content
Log in

Effect of A-site off-stoichiometry on the microstructural, structural, and electromechanical properties of lead-free tetragonal 0.80Na0.5Bi0.5TiO3–0.20BaTiO3 (NBT–20BT) piezoceramic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A-site off-stoichiometry has been an efficient method to enhance the electromechanical properties of lead-free Na0.5Bi0.5TiO3(NBT)-based piezoceramics. In this work, we have reported the effect of Na/Bi off-stoichiometry on the microstructural, structural, and electromechanical properties of the tetragonal 0.80Na0.5Bi0.5TiO3–0.20BaTiO3 (NBT–20BT) ceramic. The maximum piezoresponse ~ 115 pC/N is obtained for 4 mol% Na-deficient (20BT–Na46) and 2 mol% Bi-excess (20BT–Bi52) compositions. It is a 25% increment over the piezoresponse of the stoichiometric composition (20BT–Na50 ~ 90 pC/N). The enhancement in piezoresponse has been attributed to an optimized presence of polar-structural heterogeneity/disorder in the poled ceramic matrix and an optimized distortion of the long-range tetragonal ferroelectric phase. It is established that A-site off-stoichiometry is influencing the polar-structural heterogeneity/disorder and tetragonal lattice distortion via the grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)

    Article  CAS  Google Scholar 

  2. A. Arnau, Piezoelectric Transducers and Applications (Springer, Berlin, 2004).

    Book  Google Scholar 

  3. J.G. Gualtieri, J.A. Kosinski, A. Ballato, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 41, 53 (1994)

    Article  Google Scholar 

  4. C. Lu, A.W. Czanderna, Applications of Piezoelectric Quartz Crystal Microbalances (Elsevier, Amsterdam, 2012).

    Google Scholar 

  5. G. Wang, J. Li, X. Zhang, Z. Fan, F. Yang, A. Feteira, D. Zhou, D.C. Sinclair, T. Ma, X. Tan, D. Wang, I.M. Reaney, Energy Environ. Sci. 12, 582 (2019)

    Article  CAS  Google Scholar 

  6. B. Jaffe, W.R. Cook, H. Jaffe, The piezoelectric effect in ceramics. Piezoelectric Ceramics, pp. 7–21, (1971)

    Google Scholar 

  7. D.A. Hall, A. Steuwer, B. Cherdhirunkorn, T. Mori, P.J. Withers, Acta Mater. 54, 3075 (2006)

    Article  CAS  Google Scholar 

  8. D.A. Hall, A. Steuwer, B. Cherdhirunkorn, T. Mori, P.J. Withers, J. Appl. Phys. 96, 4245 (2004)

    Article  CAS  Google Scholar 

  9. N. Kumar, D.K. Khatua, B. Mahale, R. Ranjan, Phys. Rev. B 97, 1 (2018)

    Google Scholar 

  10. E.C. Directive, Off. J. Eur. Union L 197, 38 (2012)

    Google Scholar 

  11. E.C. Directive, Off J. Eur. Union L 37,13 (2003)

    Google Scholar 

  12. J. Rödel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009)

    Article  Google Scholar 

  13. J. Wu, J. Appl. Phys. 127, 190901 (2020)

    Article  CAS  Google Scholar 

  14. J. Rödel, J.F. Li, MRS Bull. 43, 576 (2018)

    Article  Google Scholar 

  15. P.K. Panda, B. Sahoo, Ferroelectrics 474, 128 (2015)

    Article  CAS  Google Scholar 

  16. I. Coondoo, N. Panwar, A. Kholkin, J. Adv. Dielectr. 03, 1330002 (2013)

    Article  Google Scholar 

  17. T.R. Shrout, S.J. Zhang, J. Electroceram. 19, 111 (2007)

    Article  CAS  Google Scholar 

  18. Y. Hiruma, Y. Imai, Y. Watanabe, H. Nagata, T. Takenaka, Appl. Phys. Lett. 92, 2 (2008)

    Article  Google Scholar 

  19. D.K. Khatua, A. Senyshyn, R. Ranjan, Phys. Rev. B 93, 1 (2016)

    Google Scholar 

  20. J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc. 35, 1659 (2015)

    Article  Google Scholar 

  21. S.T. Zhang, A.B. Kounga, E. Aulbach, H. Ehrenberg, J. Rödel, Appl. Phys. Lett. 91, 2 (2007)

    Google Scholar 

  22. S.T. Zhang, A.B. Kounga, E. Aulbach, T. Granzow, W. Jo, H.J. Kleebe, J. Rödel, J. Appl. Phys. 103, 1 (2008)

    Google Scholar 

  23. A.R. Paterson, H. Nagata, X. Tan, J.E. Daniels, M. Hinterstein, R. Ranjan, P.B. Groszewicz, W. Jo, J.L. Jones, MRS Bull. 43, 600 (2018)

    Article  CAS  Google Scholar 

  24. T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991)

    Article  CAS  Google Scholar 

  25. Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, T.G. Park, Appl. Phys. Lett. 96, 1 (2010)

    Google Scholar 

  26. K. Datta, K. Roleder, P.A. Thomas, J. Appl. Phys. 106, 123512 (2009)

    Article  Google Scholar 

  27. K. Datta, P.A. Thomas, K. Roleder, Phys. Rev. B 82, 1 (2010)

    Google Scholar 

  28. R. Garg, B.N. Rao, A. Senyshyn, P.S.R. Krishna, R. Ranjan, Phys. Rev. B 88, 1 (2013)

    Article  Google Scholar 

  29. R. Ranjan, A. Dviwedi, Solid State Commun. 135, 394 (2005)

    Article  CAS  Google Scholar 

  30. J.E. Daniels, W. Jo, J. Rödel, J.L. Jones, Appl. Phys. Lett. 95, 2007 (2009)

    Article  Google Scholar 

  31. I. Levin, I.M. Reaney, Adv. Funct. Mater. 22, 3445 (2012)

    Article  CAS  Google Scholar 

  32. P.B. Groszewicz, M. Gröting, H. Breitzke, W. Jo, K. Albe, G. Buntkowsky, J. Rödel, Sci. Rep. 6, 1 (2016)

    Article  Google Scholar 

  33. P.B. Groszewicz, H. Breitzke, R. Dittmer, E. Sapper, W. Jo, G. Buntkowsky, J. Rödel, Phys. Rev. B 90, 1 (2014)

    Article  Google Scholar 

  34. R. Garg, B. Narayana Rao, A. Senyshyn, R. Ranjan, J. Appl. Phys. 114, 2 (2013)

    Article  Google Scholar 

  35. C. Ma, H. Guo, X. Tan, Adv. Funct. Mater. 23, 5261 (2013)

    Article  CAS  Google Scholar 

  36. W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.J. Kleebe, A.J. Bell, J. Rödel, J. Appl. Phys. 110, 074106 (2011)

    Article  Google Scholar 

  37. G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, S.N. Popov, Sov. Phys. Solid State 2, 2584 (1961)

    Google Scholar 

  38. E. Aksel, J.S. Forrester, J.L. Jones, P.A. Thomas, K. Page, M.R. Suchomel, Appl. Phys. Lett. 98, 1 (2011)

    Article  Google Scholar 

  39. B.N. Rao, R. Ranjan, Phys. Rev. B 86, 3 (2012)

    Google Scholar 

  40. T.M. Usher, I. Levin, J.E. Daniels, J.L. Jones, Sci. Rep. 5, 1 (2015)

    Article  Google Scholar 

  41. A.M. Balagurov, E.Y. Koroleva, A.A. Naberezhnov, V.P. Sakhnenko, B.N. Savenko, N.V. Ter-Oganessian, S.B. Vakhrushev, Phase Transit. 79, 163 (2006)

    Article  CAS  Google Scholar 

  42. S. Gorfman, P.A. Thomas, J. Appl. Crystallogr. 43, 1409 (2010)

    Article  CAS  Google Scholar 

  43. B.N. Rao, M. Avdeev, B. Kennedy, R. Ranjan, Phys. Rev. B 92, 1 (2015)

    Google Scholar 

  44. B.N. Rao, D.K. Khatua, R. Garg, A. Senyshyn, R. Ranjan, Phys. Rev. B 91, 1 (2015)

    Article  Google Scholar 

  45. A. Mishra, D.K. Khatua, A. De, B. Majumdar, T. Frömling, R. Ranjan, Acta Mater. 164, 761 (2019)

    Article  CAS  Google Scholar 

  46. A. Mishra, D.K. Khatua, A. De, R. Ranjan, J. Appl. Phys. 125, 214101 (2019)

    Article  Google Scholar 

  47. Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, T.G. Park, Appl. Phys. Lett. 98, 2009 (2011)

    Article  Google Scholar 

  48. Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, H.H. Chong, T.G. Park, D. Do, S.S. Kim, Appl. Phys. Lett. 96, 3 (2010)

    Google Scholar 

  49. M.D. Abràmoff, P.J. Magalhães, S.J. Ram, Biophotonics Int. 11, 36 (2004)

    Google Scholar 

  50. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9, 671 (2012)

    Article  CAS  Google Scholar 

  51. H. Ogihara, C.A. Randall, S. Trolier-Mckinstry, J. Am. Ceram. Soc. 92, 1719 (2009)

    Article  CAS  Google Scholar 

  52. J. Rodríguez-Carvajal, FullProf. (CEA/Saclay, France, 2001)

  53. T. Durga Rao, R. Ranjith, S. Asthana, J. Appl. Phys. 115, 124110 (2014)

    Article  Google Scholar 

  54. T. Choi, Y. Horibe, H.T. Yi, Y.J. Choi, W. Wu, S.W. Cheong, Nat. Mater. 9, 253 (2010)

    Article  CAS  Google Scholar 

  55. M. Li, M.J. Pietrowski, R.A. De Souza, H. Zhang, I.M. Reaney, S.N. Cook, J.A. Kilner, D.C. Sinclair, Nat. Mater. 13, 31 (2014)

    Article  CAS  Google Scholar 

  56. L. Koch, S. Steiner, K.C. Meyer, I.T. Seo, K. Albe, T. Frömling, J. Mater. Chem. C 5, 8958 (2017)

    Article  Google Scholar 

  57. T. Frömling, S. Steiner, A. Ayrikyan, D. Bremecker, M. Dürrschnabel, L. Molina-Luna, H.J. Kleebe, H. Hutter, K.G. Webber, M. Acosta, J. Mater. Chem. C 6, 738 (2018)

    Article  Google Scholar 

  58. J. Carter, E. Aksel, T. Iamsasri, J.S. Forrester, J. Chen, J.L. Jones, Appl. Phys. Lett. 104, 3 (2014)

    Article  Google Scholar 

  59. R. Pandey, B. Narayan, D.K. Khatua, S. Tyagi, A. Mostaed, M. Abebe, V. Sathe, I.M. Reaney, R. Ranjan, Phys. Rev. B 97, 1 (2018)

    Google Scholar 

  60. V. Dorcet, G. Trolliard, Acta Mater. 56, 1753 (2008)

    Article  CAS  Google Scholar 

  61. R. Beanland, P.A. Thomas, Phys. Rev. B 89, 1 (2014)

    Article  Google Scholar 

  62. D.K. Khatua, A. Mishra, N. Kumar, G. Das Adhikary, U. Shankar, B. Majumdar, R. Ranjan, Acta Mater. 179, 49 (2019)

    Article  CAS  Google Scholar 

  63. G.A. Samara, J. Phys. Condens. Matter 15, R367–R411 (2003)

    Article  CAS  Google Scholar 

  64. N. Kumar, A. Mishra, A. De, U. Shankar, R. Ranjan, J. Phys. D 53, 1 (2020)

    Google Scholar 

  65. G. Abebe, G. Jafo, G. Das Adhikary, A. De, R. Ranjan, A. Mishra, SN Appl. Sci. 2, 1–18 (2020)

    Article  Google Scholar 

  66. D.K. Khatua, A. Kalaskar, R. Ranjan, Phys. Rev. Lett. 116, 117601 (2016)

    Article  Google Scholar 

  67. B.N. Rao, L. Olivi, V. Sathe, R. Ranjan, Phys. Rev. B 93, 1 (2016)

    Google Scholar 

  68. B.N. Rao, A. Senyshyn, L. Olivi, V. Sathe, R. Ranjan, J. Eur. Ceram. Soc. 36, 1961 (2016)

    Article  CAS  Google Scholar 

  69. D.K. Khatua, T. Mehrotra, A. Mishra, B. Majumdar, A. Senyshyn, R. Ranjan, Acta Mater. 134, 177 (2017)

    Article  CAS  Google Scholar 

  70. M. Muthuramalingam, D.E. Jain Ruth, M. Veera Gajendra Babu, N. Ponpandian, D. Mangalaraj, B. Sundarakannan, Scr. Mater. 112, 58 (2016)

    Article  CAS  Google Scholar 

  71. M. Spreitzer, M. Valant, D. Suvorov, J. Mater. Chem. 17, 185 (2007)

    Article  CAS  Google Scholar 

  72. M. Veera Gajendra Babu, B. Bagyalakshmi, D. Pathinettam Padiyan, Y. Ren, B. Sundarakannan, Scr. Mater. 141, 67 (2017)

    Article  CAS  Google Scholar 

  73. X. Liu, S. Xue, F. Wang, J. Zhai, B. Shen, Acta Mater. 164, 12 (2019)

    Article  CAS  Google Scholar 

  74. S. Bhandari, N. Sinha, G. Ray, B. Kumar, Scr. Mater. 89, 61 (2014)

    Article  CAS  Google Scholar 

  75. A. Mishra, D.K. Khatua, G. Das Adhikary, N. Kumar, U. Shankar, R. Ranjan, J. Adv. Dielectr. 9, 1 (2019)

    Article  Google Scholar 

  76. Y.R. Zhang, J.F. Li, B.P. Zhang, J. Am. Ceram. Soc. 91, 2716 (2008)

    Article  CAS  Google Scholar 

  77. M.V.G. Babu, B. Bagyalakshmi, L. Venkidu, B. Sundarakannan, Ceram. Int. 43, 12599 (2017)

    Article  CAS  Google Scholar 

  78. F. Li, D. Lin, Z. Chen, Z. Cheng, J. Wang, C. Li, Z. Xu, Q. Huang, X. Liao, L.Q. Chen, T.R. Shrout, S. Zhang, Nat. Mater. 17, 349 (2018)

    Article  CAS  Google Scholar 

  79. B. Narayan, J.S. Malhotra, R. Pandey, K. Yaddanapudi, P. Nukala, B. Dkhil, A. Senyshyn, R. Ranjan, Nat. Mater. 17, 427 (2018)

    Article  CAS  Google Scholar 

  80. A. Mishra , B. Majumdar, R. Ranjan,  J. Eur. Ceram. Soc. 37(6), 2379–84 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Arnab De acknowledges DST, Govt of India for Inspire fellowship. CeNSE, IISc is acknowledged for the SEM-imaging facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Mishra.

Ethics declarations

Conflict of interest

The authors declared no competing personal or financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A., Abebe, G., Jafo, G. et al. Effect of A-site off-stoichiometry on the microstructural, structural, and electromechanical properties of lead-free tetragonal 0.80Na0.5Bi0.5TiO3–0.20BaTiO3 (NBT–20BT) piezoceramic. J Mater Sci: Mater Electron 32, 12578–12593 (2021). https://doi.org/10.1007/s10854-021-05895-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05895-6

Navigation