Skip to main content
Log in

Preparation and characterization of ZnO-doped and Li2O-stabilized Na-β″-Al2O3 solid electrolyte via a solid-state reaction method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, Na–β"–Al2O3 is prepared using a conventional solid-state method and cost-effective burying and sintering processes with aluminum oxide and sodium carbonate as the raw materials. Lithium carbonate is added as the stabilizer, and the effect of ZnO doping on the material properties is investigated. The sample is characterized using an x-ray diffraction, a field-emission scanning electron microscope, an energy-dispersive x-ray spectroscope, and a raman spectroscope. Moreover, the density of the sample is measured using the Archimedean method, and the ionic conductivity is detected using the EIS method. Results suggest that no new phases are generated after ZnO doping and that the contents of Na+ vary according to the doping amount. When the ZnO is 1 wt%, the density of the sample is 3.190 g/cm3; moreover, the conductivity at 300 °C increases from 0.027 (doping-free) to 0.057 S/cm, and the conductance activation energy is 0.220 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E.C. Kluiters, D. Schmal, W.R.T. Veen et al., Testing of a sodium/nickel chloride (ZEBRA) battery for electric propulsion of ships and vehicles. J. Power Sources 80(1), 261–264 (1999)

    Article  CAS  Google Scholar 

  2. M. Battista, J. Gaubert, M. Egels et al., High-voltage-gain CMOS LNA for 6–8.5-GHz UWB receivers. IEEE. Trans Circuits-II 55(8), 713–717 (2008)

    Google Scholar 

  3. J. Wang, J. Yang, Y. Nuli et al., Room temperature Na/S batteries with sulfur composite cathode materials. Electrochem. Commun. 9(1), 31–34 (2007)

    Article  CAS  Google Scholar 

  4. X. Lu, G. Xia, J.P. Lemmon et al., Advanced materials for sodium-beta alumina batteries: status, challenges and perspectives. J. Power Sources 195(9), 2431–2442 (2010)

    Article  CAS  Google Scholar 

  5. N. Yanna, Room temperature Na/S batteries with sulfur composite cathode materials. Electrochem. Commun. 9(1), 31–34 (2007)

    Article  CAS  Google Scholar 

  6. G. Li, X. Lu, Y.K. Jin et al., The role of FeS in initial activation and performance degradation of Na-NiCl2 batteries. J. Power Sources 272(272), 398–403 (2014)

    Article  CAS  Google Scholar 

  7. Z. Wen, Y. Hu, X. Wu et al., ChemInform abstract: main challenges for high performance NaS battery: materials and interfaces. ChemInform 23(8), 1005–1018 (2013)

    CAS  Google Scholar 

  8. J. Wang, X.P. Jiang, X.L. Wei et al., Synthesis of Na-β″-Al2O3 electrolytes by microwave sintering precursors derived from the sol-gel method. J. Alloy Compd. 497(1), 295–299 (2010)

    Article  CAS  Google Scholar 

  9. P.E.D. Morgan, Low temperature synthetic studies of beta-aluminas. Mater. Res Bul. 11(2), 233–241 (1976)

    Article  CAS  Google Scholar 

  10. E. Mercadelli, A.S. Aricò, A. Gondolini et al., Influence of powders thermal activation process on the production of planar β-alumina ceramic membranes. J. Alloy Compd. 696, 1080–1089 (2017)

    Article  CAS  Google Scholar 

  11. T. Mathews, Solution combustion synthesis of magnesium compensated sodium-β-aluminas. Mat. Sci. Eng. β-Solid 78(1), 39–43 (2000)

    Article  Google Scholar 

  12. H.C. Park, Y.B. Lee, S.G. Lee et al., Synthesis of beta-alumina powders by microwave heating from solution-derived precipitates. Ceram. Int. 31(2), 293–296 (2005)

    Article  CAS  Google Scholar 

  13. X. Wei, Y. Cao, L. Lu et al., Synthesis and characterization of titanium doped sodium beta″-alumina. J. Alloy Compd. 509(21), 6222–6226 (2011)

    Article  CAS  Google Scholar 

  14. C. Zhu, Y. Hong, P. Huang et al., Synthesis and characterization of NiO doped beta-Al2O3 solid electrolyte. J. Alloy Compd. 688, 746–751 (2016)

    Article  CAS  Google Scholar 

  15. G. Zhang, Z. Wen, X. Wu et al., Sol–gel synthesis of Mg2+ stabilized Na-β″/β-Al2O3 solid electrolyte for sodium anode battery. J. Alloy Compd. 613, 80–86 (2014)

    Article  CAS  Google Scholar 

  16. D. Xu, H. Jiang, M. Li et al., Synthesis and characterization of Y2O3 doped Na-β″-Al2O3 solid electrolyte by double zeta process. Ceram. Int. 41(4), 5355–5361 (2015)

    Article  CAS  Google Scholar 

  17. L.P. Yang, S.J. Shan, X.L. Wei et al., The mechanical and electrical properties of ZrO2-TiO2-Na-β/β″-alumina composite electrolyte synthesized via a citrate sol-gel method. Ceram. Int. 40(7), 9055–9060 (2014)

    Article  CAS  Google Scholar 

  18. D. Xu, H. Jiang, Y. Li et al., The mechanical and electrical properties of Nb2O5 doped Na-β"-Al2O3 solid electrolyte. Eur. Phys. J-Appl. Phys. 74(1), 10901 (2016)

    Article  CAS  Google Scholar 

  19. Z.M. Wang, X.X. Feng, T.F. Zhang et al., Preparation and haracterization of CoO-doped and Li2O-stabilized Na-β″-Al2O3solid electrolyte via a solid-state reaction method. Ceram. Int. 46(15), 24668–24673 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the financial support from the National Natural Science Foundation of China (Grant No. 51767010) and Science and Technology Research Project of the Jiangxi Education Department (Grant No. GJJ181527).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhumei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Wang, Z., Feng, X. et al. Preparation and characterization of ZnO-doped and Li2O-stabilized Na-β″-Al2O3 solid electrolyte via a solid-state reaction method. J Mater Sci: Mater Electron 32, 14149–14155 (2021). https://doi.org/10.1007/s10854-021-05891-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05891-w

Navigation