Skip to main content
Log in

Optical, thermal and radiation shielding properties of B2O3–NaF–PbO–BaO–La2O3 glasses

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The techniques of melt-quenching have been used to generate 53B2O3—2NaF—27PbO – \((20-x)\) BaO—\(x\) La2O3 \((0\le x \ge 15) glass system\). XRD patterns have been established the amorphous character of glass samples. There is a clear evidence of the role of the La2O3 modifier in the glass network. The thermal characteristics have been identified to increase with an increase in La2O3 content. Increasing La2O3 increases the linear and non-linear optical bandgap energy and the Urbach energy. By adding La2O3 to the glass samples, the refractive index, molar polarizability, polarizability, and optical basicity increased. The bulk modulus and the glass transition temperature increased because of the increase in bond strength. The number of bonds per unit increased with the increase in La2O3 content because of the modifier character of La2O3 in the glass samples. Many optical parameters (ε \(\boldsymbol{\infty }\)), (εo), \({\chi }^{(1)}\), \(\left({\chi }^{(3)}\right)\) and \({(n}_{2})\) as a function of linear and non-linear \({E}_{opt}\) have been obtained. The extent of shielding in this article has been examined with the increment in La2O3 at the expense of BaO. The results correspond with similar studies conducted before.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. G. Sathiyapriya, K.A. Naseer, K. Marimuthu et al., Structural, optical, and nuclear radiation shielding properties of strontium barium borate glasses doped with dysprosium and niobium. J. Mater. Sci.: Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-05499-0

    Article  Google Scholar 

  2. I.O. Olarinoye, Y.S. Rammah, S. Alraddadi, C. Sriwunkum, A.F. Abd El-Rehim, H.Y. Zahran, M.S. Al-Buriahi, The effects of La2O3 addition on mechanical and nuclear shielding properties for zinc borate glasses in Monte Carlo simulation. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.08.092

    Article  Google Scholar 

  3. I. Boukhris, I. Kebaili, M.S. Al-Buriahi et al., Effect of lead oxide on the optical properties and radiation shielding efficiency of antimony-sodium-tungsten glasses. Appl. Phys. A 126, 763 (2020). https://doi.org/10.1007/s00339-020-03932-5

    Article  CAS  Google Scholar 

  4. Y.S. Rammah, F.I. El-Agawany, N. Elkhoshkhany et al., Physical, optical, thermal, and gamma-ray shielding features of fluorotellurite lithiumniobate glasses: TeO2-LiNbO3-BaO-BaF2-La2O3. J. Mater. Sci.: Mater. Electron. 32, 3743–3752 (2021). https://doi.org/10.1007/s10854-020-05119-3

    Article  CAS  Google Scholar 

  5. W. Shakespeare, Halide glass. Struct. Chem. Glasses (2002). https://doi.org/10.1016/b978-008043958-7/50019-4

    Article  Google Scholar 

  6. M. Yamane, H. Kawazoe, S. Inoue, K. Maeda, IR transparency of the glass of ZnCl2-KBr-PbBr 2 system. Mater. Res. Bull. 20(8), 905–911 (1985). https://doi.org/10.1016/0025-5408(85)90073-x

    Article  CAS  Google Scholar 

  7. A.F.A. El-Rehim, K.S. Shaaban, Influence of La2O3 content on the structural, mechanical, and radiation-shielding properties of sodium fluoro lead barium borate glasses. J. Mater. Sci.: Mater. Electron. (2021). https://doi.org/10.1007/s10854-020-05204-7

    Article  Google Scholar 

  8. K.S. Shaaban, Y.B. Saddeek, M.A. Sayed et al., Mechanical and thermal properties of lead borate glasses containing CaO and NaF. SILICON 10, 1973–1978 (2018). https://doi.org/10.1007/s12633-017-9709-8

    Article  CAS  Google Scholar 

  9. A. Okasha, S.Y. Marzouk, A.H. Hammad, A.M. Abdelghany, Optical character inquest of cobalt containing fluoroborate glass. Optik – Int. J. Light. Electron. Opt. 142, 125–133 (2017). https://doi.org/10.1016/j.ijleo.2017.05.088

    Article  CAS  Google Scholar 

  10. J. Wong, C.A. Angell, Glass Structure by Spectroscopy (Maral Dekker Inc., New York, 1976).

    Google Scholar 

  11. J.J. Schuyt, G.V.M. Williams, Photoluminescence of Dy3+ and Dy2+ in NaMgF3: Dy: a potential infrared radio photoluminescence dosimeter. Radiat. Meas. (2020). https://doi.org/10.1016/j.radmeas.2020.106326

    Article  Google Scholar 

  12. F.H.A. Elbatal, M.A. Marzouk, Y.M. Hamdy, H.A. ElBatal, Optical and FT infrared absorption spectra of 3d transition metal ions doped in NaF-CaF2-B2O3glass and effects of gamma irradiation. J. Solid-State Phys. 2014, 1–8 (2014). https://doi.org/10.1155/2014/389543

    Article  Google Scholar 

  13. H. Doweidar, G. El-Damrawi, M. Abdelghany, Structure and properties of CaF2–B2O3 glasses. J. Mater. Sci. 47(9), 4028–4035 (2012). https://doi.org/10.1007/s10853-012-6256-y

    Article  CAS  Google Scholar 

  14. A.M. Abdelghany, H.A. ElBatal, F.M. EzzElDin, Influence of CuO content on the structure of lithium fluoroborate glasses: Spectral and gamma irradiation studies. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 149, 788–792 (2015). https://doi.org/10.1016/j.saa.2015.04.105

    Article  CAS  Google Scholar 

  15. A. Yadav, M.S. Dahiya, P. Narwal, A. Hooda, A. Agarwal, S. Khasa, Electrical characterization of lithium bismuth borate glasses containing cobalt/vanadium ions. Solid State Ion. 312, 21–31 (2017). https://doi.org/10.1016/j.ssi.2017.10.006

    Article  CAS  Google Scholar 

  16. K.S. Shaaban, E.S. Yousef, E.A. Abdel Wahab et al., Investigation of crystallization and mechanical characteristics of glass and glass-ceramic with the compositions xFe2O3–35SiO2–35B2O3–10Al2O3-(20–x) Na2O. J. Mater. Eng. Perform. 29, 4549–4558 (2020). https://doi.org/10.1007/s11665-020-04969-6

    Article  CAS  Google Scholar 

  17. K.S. Shaaban, S.M. Abo-Naf, M.E.M. Hassouna, Physical and structural properties of lithium borate glasses containing MoO3. SILICON 11, 2421–2428 (2019). https://doi.org/10.1007/s12633-016-9519-4

    Article  CAS  Google Scholar 

  18. W.M. Abd-Allah, H.A. Saudi, K.S. Shaaban et al., Investigation of structural and radiation shielding properties of 40B2O3–30PbO–(30–x) BaO-x ZnO glass system. Appl. Phys. A 125, 275 (2019). https://doi.org/10.1007/s00339-019-2574-0

    Article  CAS  Google Scholar 

  19. K.S. Shaaban, S.M. Abo-naf, A.M. Abd Elnaeim, M.E.M. Hassouna, Studying effect of MoO3 on elastic and crystallization behavior of lithium diborate glasses. Appl. Phys. A (2017). https://doi.org/10.1007/s00339-017-1052-9

    Article  Google Scholar 

  20. E.A.A. Wahab, K.S. Shaaban, Effects of SnO2 on spectroscopic properties of borosilicate glasses before and after plasma treatment and its mechanical properties. Mater. Res. Express 5(2), 025207 (2018). https://doi.org/10.1088/2053-1591/aaaee8

    Article  CAS  Google Scholar 

  21. A.F.A. El-Rehim, A.M. Ali, H.Y. Zahran et al., Spectroscopic, structural, thermal, and mechanical properties of B2O3-CeO2-PbO2 glasses. J. Inorg. Organomet. Polym. (2020). https://doi.org/10.1007/s10904-020-01799-w

    Article  Google Scholar 

  22. K.S. Shaaban, Y. El Sayed, Optical properties of Bi2O3 doped boro tellurite glasses and glass ceramics. Optik: Int. J. Light Electron Optic. 203, 163976 (2020). https://doi.org/10.1016/j.ijleo.2019.163976

    Article  CAS  Google Scholar 

  23. E.A. Abdel Wahab, K.S. Shaaban, R. Elsaman et al., Radiation shielding, and physical properties of lead borate glass doped ZrO2 nanoparticles. Appl. Phys. A 125, 869 (2019). https://doi.org/10.1007/s00339-019-3166-8

    Article  CAS  Google Scholar 

  24. Shaaban, K.S., Yousef, E.S., Mahmoud, S.A. et al. (2020). Mechanical, Structural and Crystallization Properties in Titanate Doped Phosphate Glasses. J Inorg Organomet. Polym https://doi.org/10.1007/s10904-020-01574-x

  25. L.R.P. Kassab, L.C. Courrol, R. Seragioli, N.U. Wetter, S.H. Tatumi, L. Gomes, Er3+ laser transition in PbO–PbF2–B2O3 glasses. J. Non-Cryst. Solids 348, 94–97 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.08.132

    Article  CAS  Google Scholar 

  26. S. Ibrahim, F.H. ElBatal, A.M. Abdelghany, Optical character enrichment of NdF3 – doped lithium fluoroborate glasses. J. Non-Cryst. Solids 453, 16–22 (2016). https://doi.org/10.1016/j.jnoncrysol.2016.09.017

    Article  CAS  Google Scholar 

  27. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X / PSD: Development of a user-friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. (2020). https://doi.org/10.1016/j.radphyschem.2019.108496

    Article  Google Scholar 

  28. K.S. Shaaban, E.A.A. Wahab, E.R. Shaaban et al., Electronic polarizability, optical basicity and mechanical properties of aluminum lead phosphate glasses. Opt. Quant. Electron. 52, 125 (2020). https://doi.org/10.1007/s11082-020-2191-3

    Article  CAS  Google Scholar 

  29. M. Abdel-Baki, F. El-Diasty, F.A.A. Wahab, Optical characterization of xTiO2–(60–x) SiO2–40Na2O glasses: II. Absorption edge, Fermi level, electronic polarizability, and optical basicity. Opti. Commun. 261(1), 65–70 (2006). https://doi.org/10.1016/j.optcom.2005.11.056

    Article  CAS  Google Scholar 

  30. K.S. Shaaban, M.S.I. Koubisy, H.Y. Zahran et al., Spectroscopic properties, electronic polarizability, and optical basicity of titanium-cadmium tellurite glasses doped with different amounts of lanthanum. J. Inorg. Organomet. Polym. (2020). https://doi.org/10.1007/s10904-020-01640-4

    Article  Google Scholar 

  31. H.H. Somaily, K.S. Shaaban, S.A. Makhlouf et al., Comparative studies on polarizability, optical basicity and optical properties of lead borosilicate modified with Titania. J. Inorg. Organomet. Polym. (2020). https://doi.org/10.1007/s10904-020-01650-2

    Article  Google Scholar 

  32. K. Shaaban, E.A. Abdel Wahab, A.A. El-Maaref et al., Judd-Ofelt analysis and physical properties of erbium modified cadmium lithium gadolinium silicate glasses. J. Mater. Sci.: Mater. Electron. 31, 4986–4996 (2020). https://doi.org/10.1007/s10854-020-03065-8

    Article  CAS  Google Scholar 

  33. A.M. Fayad, K.S. Shaaban, W.M. Abd-Allah et al., Structural and optical study of CoO doping in borophosphate host glass and effect of gamma irradiation. J. Inorg. Organomet. Polym. (2020). https://doi.org/10.1007/s10904-020-01641-3

    Article  Google Scholar 

  34. H.A. Saudi, W.M. Abd-Allah, K.S. Shaaban, Investigation of gamma and neutron shielding parameters for borosilicate glasses doped europium oxide for the immobilization of radioactive waste. J. Mater. Sci.: Mater. Electron. 31, 6963–6976 (2020). https://doi.org/10.1007/s10854-020-03261-6

    Article  CAS  Google Scholar 

  35. K.S. Shaaban, E.A.A. Wahab, E.R. Shaaban et al., Electronic polarizability, optical basicity, thermal, mechanical and optical investigations of (65B2O3–30Li2O–5Al2O3) glasses doped with titanate. J. Elec. Mater. 49, 2040–2049 (2020). https://doi.org/10.1007/s11664-019-07889-x

    Article  CAS  Google Scholar 

  36. A.M. Abdelghany, H.A. ElBatal, Optical and μ-FTIR mapping: a new approach for structural evaluation of V2O5 -lithium fluoroborate glasses. Mater. Des. 89, 568–572 (2016). https://doi.org/10.1016/j.matdes.2015.09.159

    Article  CAS  Google Scholar 

  37. A.A. El-Maaref, E.A.A. Wahab, K.S. Shaaban, M. Abdelawwad, M.S.I. Koubisy, J. Börcsök, E.S. Yousef, Visible and mid-infrared spectral emissions and radiative rates calculations of Tm3+ doped BBLC glass. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 242, 118774 (2020). https://doi.org/10.1016/j.saa.2020.118774

    Article  CAS  Google Scholar 

  38. E.A. Abdel Wahab, K.S. Shaaban, E.S. Yousef, Enhancement of optical and mechanical properties of sodium silicate glasses using zirconia. Opt. Quant. Electron. 52, 458 (2020). https://doi.org/10.1007/s11082-020-02575-3

    Article  CAS  Google Scholar 

  39. E.A. Abdel Wahab, Novel borosilicate glass system: Na2B4O7-SiO2-MnO2: synthesis, average electronics polarizability, optical basicity, and gamma-ray shielding features. J. Non-Crystall. Solids (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120509

    Article  Google Scholar 

  40. J. Tauc, Electronic properties of amorphous materials: changes are considered which occur when the long-range order typical for crystals disappears. Science. 158(3808), 1543–1548 (1967). https://doi.org/10.1126/science.158.3808.1543

    Article  CAS  Google Scholar 

  41. X. Zhao, X. Wang, H. Lin, Z. Wang, Electronic polarizability and optical basicity of lanthanide oxides. Phys. B: Cond. Matter. 392(1–2), 132–136 (2007). https://doi.org/10.1016/j.physb.2006.11.015

    Article  CAS  Google Scholar 

  42. V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. I. J. Appl. Phys. 79(3), 1736–1740 (1996). https://doi.org/10.1063/1.360962

    Article  CAS  Google Scholar 

  43. T.S. Moss, Relations between the refractive index and energy gap of semiconductors. Phys. Status Solidi (b) 131(2), 415–427 (1985). https://doi.org/10.1002/pssb.2221310202

    Article  CAS  Google Scholar 

  44. N.M. Ravindra, Energy gap-refractive index relation — some observations. Infrared Physics 21(5), 283–285 (1981). https://doi.org/10.1016/0020-0891(81)90033-6

    Article  CAS  Google Scholar 

  45. V.P. Gupta, N.M. Ravindra, Comments on the moss formula. Phys. Status Solidi (b) 100(2), 715–719 (1980). https://doi.org/10.1002/pssb.2221000240

    Article  CAS  Google Scholar 

  46. M. Anani, C. Mathieu, S. Lebid, Y. Amar, Z. Chama, H. Abid, Model for calculating the refractive index of a III-V semiconductor. Comput. Mater. Sci 41, 570–757 (2008)

    Article  CAS  Google Scholar 

  47. V. Kumar, J.K. Singh, Model for calculating the refractive index of different materials. Ind. J. Pure and Appl. Phys. 48, 571–574 (2010)

    CAS  Google Scholar 

  48. P. Hervé, L.K.J. Vandamme, General relation between refractive index and energy gap in semiconductors. Infrared Physics & Technology 35(4), 609–615 (1994). https://doi.org/10.1016/1350-4495(94)90026-4

    Article  Google Scholar 

  49. Varshneya Arun K., Fundamentals of inorganic glasses, Academic Prese Limited, (1994), p.33.

  50. K.S. Shaaban, H.Y. Zahran, I.S. Yahia et al., Mechanical and radiation-shielding properties of B2O3–P2O5–Li2O–MoO3 glasses. Appl. Phys. A 126, 804 (2020). https://doi.org/10.1007/s00339-020-03982-9

    Article  CAS  Google Scholar 

  51. E.A. Abdel Wahab, K.S. Shaaban, R. Elsaman et al., Radiation shielding, and physical properties of lead borate glass doped ZrO2 nanoparticles. Appl. Phys. A 125(12), 869 (2019). https://doi.org/10.1007/s00339-019-3166-8

    Article  CAS  Google Scholar 

  52. R.M. El-Sharkawy, K.S. Shaaban, R. Elsaman, E.A. Allam, A. El-Taher, M.E. Mahmoud, Investigation of mechanical and radiation shielding characteristics of novel glass systems with the composition xNiO-20ZnO-60B2O3-(20–x) CdO based on nano metal oxides. J. Non-Crystall. Solids 528, 119754 (2020). https://doi.org/10.1016/j.jnoncrysol.2020

    Article  CAS  Google Scholar 

  53. A.F.A. El-Rehim, H.Y. Zahran, I.S. Yahia et al., Physical, radiation shielding and crystallization properties of Na2O-Bi2O3- MoO3-B2O3- SiO2-Fe2O3 Glasses. Silicon (2020). https://doi.org/10.1007/s12633-020-00827-1

    Article  Google Scholar 

  54. A.A. El-Rehim, H. Zahran, I. Yahia et al., Radiation, crystallization, and physical properties of cadmium borate glasses. Silicon (2020). https://doi.org/10.1007/s12633-020-00798-3

    Article  Google Scholar 

  55. E. Kavaz, N.Y. Yorgun, Gamma ray buildup factors of lithium borate glasses doped with minerals. J. Alloys Compd. 752, 61–67 (2018). https://doi.org/10.1016/j.ceramint.2019.05.028

    Article  CAS  Google Scholar 

  56. P. Kaur, D. Singh, T. Singh, Heavy metal oxide glasses as gamma rays shielding material. Nucl. Eng. Design 307, 364–376 (2016). https://doi.org/10.1016/j.nucengdes.2016.07.029

    Article  CAS  Google Scholar 

  57. S. Ozturk, E. Ilik, G. Kilic et al., Ta2O5-doped zinc-borate glasses: physical, structural, optical, thermal, and radiation shielding properties. Appl. Phys. A 126, 844 (2020). https://doi.org/10.1007/s00339-020-04041-z

    Article  CAS  Google Scholar 

  58. Y.S. Rammah, K.A. Mahmoud, E. Kavaz, A. Kumar, F.I. El-Agawany, The role of PbO/Bi2O3 insertion on the shielding characteristics of novel borate glasses. Ceram. Int. 46(15), 23357–23368 (2020). https://doi.org/10.1016/j.ceramint.2020.04.018

    Article  CAS  Google Scholar 

  59. M.S. AlBuriahi, H.H. Hegazy, F. Alresheedi, I.O. Olarinoye, H. Algarni, H.O. Tekin, H.A. Saudi, Effect of CdO addition on photon, electron, and neutron attenuation properties of boro-tellurite glasses. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.10.168

    Article  Google Scholar 

  60. S. Stalin, D.K. Gaikwad, M.S. Al-Buriahi, C. Srinivasu, S.A. Ahmed, H.O. Tekin, S. Rahman, Influence of Bi2O3/WO3 substitution on the optical, mechanical, chemical durability and gamma ray shielding properties of lithium-borate glasses. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.10.109

    Article  Google Scholar 

  61. M.S. Al-Buriahi, H.H. Somaily, A. Alalawi et al., Polarizability, optical basicity, and photon attenuation properties of Ag2O–MoO3–V2O5–TeO2 glasses: the role of silver oxide. J. Inorg. Organomet. Polym. (2020). https://doi.org/10.1007/s10904-020-01750-z

    Article  Google Scholar 

  62. M.S. Al-Buriahi, E.M. Bakhsh, B. Tonguc, S.B. Khan, Mechanical and radiation shielding properties of tellurite glasses doped with ZnO and NiO. Ceram. Int. 46(11), 19078–19083 (2020). https://doi.org/10.1016/j.ceramint.2020.04.240

    Article  CAS  Google Scholar 

  63. M.S. Al-Buriahi, V.P. Singh, A.. Alalawi, C. Sriwunkum, B.T. Tonguc, Mechanical features and radiation shielding properties of TeO2–Ag2O-WO3 glasses. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.03.091

    Article  Google Scholar 

  64. M.S. Al-Buriahi, B. Tonguç, U. Perişanoğlu, E. Kavaz, The impact of Gd2O3 on nuclear safety proficiencies of TeO2–ZnO–Nb2O5 glasses: a GEANT4 Monte Carlo study. Ceram. Int. 46(15), 23347–23356 (2020). https://doi.org/10.1016/j.ceramint.2020.03.110

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Taif University Research Supporting Project number (TURSP-2020/63), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. S. Shaaban.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaaban, K.S., Alomairy, S. & Al-Buriahi, M.S. Optical, thermal and radiation shielding properties of B2O3–NaF–PbO–BaO–La2O3 glasses. J Mater Sci: Mater Electron 32, 26034–26048 (2021). https://doi.org/10.1007/s10854-021-05885-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05885-8

Navigation