Skip to main content
Log in

Hybrid perovskite films deposited by thermal evaporation from a single source

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hybrid perovskites, such as MAPbI3, are very promising materials to fabricate highly efficient and low-cost solar cells and photodetectors. In this work, we propose a new method of deposition of hybrid perovskite thin films through thermal evaporation of MAPbI3 powder from a single source for which was evaluated the effect of evaporation parameters (distance, time, substrate temperature, chamber pressure, and crucible heating rate) on the structural, optical, and morphological properties. It was found that it is necessary to control adequately the chamber partial pressure, substrate temperature, and the crucible heating rate in order to obtain single-phase MAPbI3 perovskite films. Also, it was studied the solvent annealing treatment as a method to increase the grain size of evaporated films. Finally, a study of transient and steady-state photoconductivity allowed verifying that the evaporated MAPbI3 films present fast band to band photogeneration and bimolecular recombination, and also that the grain size growth leads to an increase of the photoconductivity intensity due to the improvement of the diffusion length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source thermal evaporation system used to deposit MAPbI3 films. b Evaporation routine typically used to obtain single-phase MAPbI3 films

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Roy, S.N. Kumar, S. Tiwarib, A. Khare, A review on perovskite solar cells: evolution of architecture, fabrication techniques, commercialization issues and status. Sol. Energy 198, 665–688 (2020)

    Article  CAS  Google Scholar 

  2. M.R. Leyden, L. Meng, Y. Jiang, L.K. Ono, L. Qiu, E.J. Juarez-Perez, C. Qin, C. Adachi, Y. Qi, Methylammonium lead bromide perovskite light-emitting diodes by chemical vapor deposition. J. Phys. Chem. Lett. 8(14), 3193–3198 (2017)

    Article  CAS  Google Scholar 

  3. J. Miao, F. Zhang, Recent progress on highly sensitive perovskite photodetectors. J. Mater. Chem. C 7, 1741–1791 (2019)

    Article  CAS  Google Scholar 

  4. J. Nakazakia, H. Segawa, Evolution of organometal halide solar cells. J. Photochem. Photobiol. C 35, 74–107 (2018)

    Article  Google Scholar 

  5. NREL, Best Research-Cell Efficiencies. https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20200406.pdf (2020).

  6. M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, A.W.Y. Ho-Baillie, Solar cell efficiency tables (Version 55). Prog. Photovolt. 28(1), 3–15 (2019)

    Article  Google Scholar 

  7. (2020) Perovskites take steps to industrialization. Nat. Energy 5, 1.

  8. Y. Galagan, Perovskite solar cells: toward industrial-scale methods. J. Phys. Chem. Lett. 9(15), 4326–4335 (2018)

    Article  CAS  Google Scholar 

  9. S. Wang, L.K. Ono, M.R. Leyden, Y. Kato, S.R. Raga, M.V. Lee, Y. Qi, Smooth perovskite thin films and efficient perovskite solar cells prepared by the hybrid deposition method. J. Mater. Chem. A 3, 14631–14641 (2015)

    Article  CAS  Google Scholar 

  10. V. Arivazhagan, J. Xie, Z. Yang, P. Hang, M.M. Parvathi, K. Xiao, X. Yu, Vacuum co-deposited CH3NH3PbI3 films by controlling vapor pressure for efficient planar perovskite solar cells. Sol. Energy 181, 339–344 (2019)

    Article  CAS  Google Scholar 

  11. M.A. Reinoso, C.A. Otálora, G. Gordillo, Improvement properties of hybrid halide perovskite thin films prepared by sequential evaporation for planar solar cells. Materials. 12(9), 1394 (2019)

    Article  CAS  Google Scholar 

  12. X. Zhu, D. Yang, R. Yang, B. Yang, Z. Yang, X. Ren, J. Zhang, J. Niu, J. Feng, S. Liu, Superior stability for perovskite solar cells with 20% efficiency using vacuum co-evaporation. Nanoscale 9, 12316–12323 (2017)

    Article  CAS  Google Scholar 

  13. S. Wang, L.K. Ono, M.R. Leyden, Y. Kato, S.R. Raga, M.V. Lee, Y. Qi, Smooth perovskite thin films and efficient perovskite solar cells prepared by the hybrid deposition method. J. Mater. Chem A 3, 14631–14641 (2015)

    Article  CAS  Google Scholar 

  14. L.K. Ono, M.R. Leyden, S. Wang, Y. Qi, Organometal halide perovskite thin films and solar cells by vapour deposition. J. Mater. Chem. A 4, 6693–6713 (2016)

    Article  CAS  Google Scholar 

  15. V. Arivazhagan, J. Xie, Z. Yang, P. Hang, P.M. Manonmani, K. Xiao, C. Cui, D. Yang, X. Yu, Vacuum co-deposited CH3NH3PbI3 films by controlling vapor pressure for efficient planar perovskite solar cells. Sol. Energy 181, 339–344 (2019)

    Article  CAS  Google Scholar 

  16. H. Adachi, K. Wasa, Thin Films and Nanomaterials. Handbook of Sputtering Technology, 3–39 (2012)

  17. H. Zhang, M. Tao, B. Gao, W. Chen, Qi. Li, Xu. Qingyu, S. Dong, Preparation of CHNHPbI3 thin films with tens of micrometer scale at high temperature. Sci. Rep. 7, 8458 (2017)

    Article  Google Scholar 

  18. L.A. Muscarella, E.M. Hutter, S. Sanchez, C.D. Dielema, T.J. Savenije, A. Hagfeldt, M. Saliba, B. Ehrler, C. Orientation, G. Size, Do they determine optoelectronic properties of MAPbI3 perovskite? J. Phys. Chem. Lett. 10, 6010–6018 (2019)

    Article  CAS  Google Scholar 

  19. Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26(37), 6503–6509 (2014)

    Article  CAS  Google Scholar 

  20. J. Liu, C. Gao, X. He, Q. Ye, L. Ouyang, D. Zhuang, C. Liao, J. Mei, W. Lau, Improved crystallization of perovskite films by optimized solvent annealing for high efficiency solar cell. ACS Appl. Mater. Interfaces 4(7), 24008–24015 (2015)

    Article  Google Scholar 

  21. A.M. Leguy, P. Azarhoosh, M.I. Alonso, M. Campoy-Quiles, O.J. Weber, J. Yao, D. Bryant, M.T. Weller, J. Nelson, A. Walsh, M. Van Schilfgaarde, Experimental and theoretical optical properties of methylammonium lead halide perovskites. Nanoscale 8(12), 6317–27 (2016)

    Article  CAS  Google Scholar 

  22. W. Li, T. Sha, Y. Wang, Yu. Wenlei, K. Jiang, H. Zhou, C. Liu, Hu. Zhigao, J. Chu, Effects of deposition methods and processing techniques on band gap, interband electronic transitions, and optical absorption in perovskite CH3NH3PbI3 films. Appl. Phys. Lett. 111, 011906 (2017)

    Article  Google Scholar 

  23. W. Huang, Y. Liu, S.Z. Yue et al., Optical bandgap energy of CH3NH3PbI3 perovskite studied by photoconductivity and reflectance spectroscopy. Sci. China Tech. Sci. 61, 886–892 (2018)

    Article  CAS  Google Scholar 

  24. K.C. Kao, Dielectric Phenomena in Solids with Emphasis on Physical Concepts of Electronic Process (Elsevier Academic Press, San Diego, 2004).

    Google Scholar 

  25. S.B. Syamala, Photoconductivity Studies on Some Semiconducting Thin Films for Photovoltaic Applications (Cochin University of Science and Technology, Kochi, India, Department of Physics, 2004).

    Google Scholar 

Download references

Acknowledgements

This project was funded by Universidad Industrial de Santander Postdoctoral research supporting program VIE (grant number RC N° 001-1577) and by the Solar Cells Laboratory of Universidad Nacional de Colombia-Bogotá.

Funding

This study was funded by Universidad Industrial de Santander Postdoctoral research supporting program VIE (grant number RC N° 001- 1577).

Author information

Authors and Affiliations

Authors

Contributions

C. Otalora, M. Botero, and J.F. Petit contributed to conceptualization; C. Otalora and M. Botero were involved in methodology; J.F. Petit validated the study; C. Otalora and G. Gordillo performed formal Analysis; C. Otalora, M. Botero, M. Mantilla, R.Ospina, J.F. Petit, and G. Gordillo investigated the study; R. Ospina, M. Botero, and G. Gordillo collected resources; C. Otalora was involved in writing––original draft; M. Botero, M. Mantilla., R. Ospina, J.F. Petit, and G. Gordillo were involved in writing––review & editing; J.F. Petit supervised the study; M. Botero contributed to project administration; M. Botero and G. Gordillo were involved in funding acquisition.

Corresponding author

Correspondence to Camilo Otalora.

Ethics declarations

Conflict of Interest:

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 644 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otalora, C., Botero, M.A., Mantilla, M.A. et al. Hybrid perovskite films deposited by thermal evaporation from a single source. J Mater Sci: Mater Electron 32, 12151–12163 (2021). https://doi.org/10.1007/s10854-021-05844-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05844-3

Navigation