Skip to main content

Advertisement

Log in

Simultaneously achieved high energy-storage and superior charge–discharge performance in K0.5Bi0.5TiO3-based lead-free ceramics by A-site defect engineering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Simultaneously possessed high energy-storage and power density dielectric ceramics are promising materials for pulsed power capacitor applications. In this work, the (1 − x)K0.5Bi0.5TiO3xCa0.7La0.2TiO3 ((1 − x)KBT–xCLT, x = 0, 0.24, 0.29, and 0.34) ceramics were prepared by conventional solid-state reaction method. The structural, dielectric, and energy storage properties of the ceramics were systematically studied. All ceramics exhibit a main perovskite phase with dense microstructure accompanied by little secondary phase. With the increasing of CLT content, relaxor behavior appears and gradually becomes notable in the samples. A high recoverable energy storage density of 2.57 J/cm3 together with outstanding power density of 47 MW/cm3 can be achieved simultaneously in the 0.66KBT–0.34CLT ceramic. In addition, the ceramic also shows a rapid discharge time of 41 ns. This study provides a strategy for achieving high recoverable energy storage and power density simultaneously for pulsed capacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.J. Chu, X. Zhou, K.L. Ren, B. Neese, M.R. Lin, Q. Wang, F. Bauer, Q.M. Zhang, A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334–336 (2006)

    CAS  Google Scholar 

  2. L.T. Yang, X. Kong, F. Li, H. Hao, Z.X. Cheng, H.X. Liu, J.F. Li, S.J. Zhang, Perovskite lead-free dielectrics for energy storage applications. Prog. Mater Sci. 102, 72–108 (2019)

    CAS  Google Scholar 

  3. M. Farhadi, O. Mohammed, Energy storage technologies for high-power applications. IEEE Trans. Ind. Appl. 52, 1953–1961 (2016)

    CAS  Google Scholar 

  4. Z.H. Yao, Z. Song, H. Hao, Z.Y. Yu, M.H. Cao, S.J. Zhang, M.T. Lanagan, H.X. Liu, Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv. Mater. 29, 1601727 (2017)

    Google Scholar 

  5. Q. Xu, T.M. Li, H. Hao, S.J. Zhang, Z.J. Wang, M.H. Cao, Z.H. Yao, H.X. Liu, Enhanced energy storage properties of NaNbO3 modified Bi0.5Na0.5TiO3 based ceramics. J. Eur. Ceram. Soc. 35, 545–553 (2015)

    CAS  Google Scholar 

  6. J.N. Sui, H.Q. Fan, B. Hu, L. Ning, High temperature stable dielectric properties and enhanced energy-storage performance of (1-x)(0.85Na0.5Bi0.5TiO3-0.15Ba0.8Ca0.2Ti0.8Zr0.2O3)-xK0.5Na0.5NbO3 lead-free ceramics. Ceram. Int. 44, 18054–18059 (2018)

    CAS  Google Scholar 

  7. F. Li, J.W. Zhai, B. Shen, X. Liu, H.R. Zeng, Simultaneously high-energy storage density and responsivity in quasi-hysteresis-free Mn-doped Bi0.5Na0.5TiO3-BaTiO3-(Sr0.7Bi0.20.1)TiO3 ergodic relaxor ceramics. Mater. Res. Let. 6, 345–352 (2018)

    CAS  Google Scholar 

  8. Y.P. Pu, M.T. Yao, L. Zhang, M. Chen, Enhanced energy storage density of 0.55Bi0.5Na0.5TiO3-0.45Ba0.85Ga0.15Ti0.85Zr0.1Sn0.05O3 with MgO addition. J. Alloys Compd. 702, 171–177 (2017)

    CAS  Google Scholar 

  9. J.G. Hao, Z.J. Xu, R.Q. Chu, W. Li, J. Du, P. Fu, Enhanced energy-storage properties of (1-x)[(1-y)(Bi0.5Na0.5)TiO3-y(Bi0.5K0.5)TiO3]-x(K0.5Na0.5)NbO3 lead-free ceramics. Solid State Commun. 204, 19–22 (2015)

    CAS  Google Scholar 

  10. F. Yan, K.W. Huang, T. Jiang, X.F. Zhou, Y.J. Shi, G.L. Ge, B. Shen, J.W. Zhai, Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering. Nano Energy 75, 105012 (2020)

    CAS  Google Scholar 

  11. Z.P. Wang, R.R. Kang, L.X. Zhang, P. Mao, Q.Z. Sun, F. Kang, J.P. Wang, Remarkably enhanced energy-storage density and excellent thermal stability under low electric fields of (Na0.5Bi0.5)TiO3-based ceramics via composition optimization strategy. J. Eur. Ceram. Soc. 41, 1917–1924 (2021)

    CAS  Google Scholar 

  12. M.X. Zhou, R.H. Liang, Z.Y. Zhou, X.L. Dong, Novel BaTiO3-based lead-free ceramic capacitors featuring high energy storage density, high power density, and excellent stability. J. Mater. Chem. C 6, 8528–8537 (2018)

    CAS  Google Scholar 

  13. F. Li, M.X. Zhou, J.W. Zhai, B. Shen, H.R. Zeng, Novel barium titanate based ferroelectric relaxor ceramics with superior charge-discharge performance. J. Eur. Ceram. Soc. 38, 4646–4652 (2018)

    CAS  Google Scholar 

  14. Q.B. Yuan, F.Z. Yao, Y.F. Wang, R. Ma, H. Wang, Relaxor ferroelectric 0.9BaTiO3–0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties. J. Mater. Chem. C 5, 9552–9558 (2017)

    CAS  Google Scholar 

  15. Y.L. Huang, C.L. Zhao, B. Wu, J.G. Wu, Multifunctional BaTiO3-based relaxor ferroelectrics toward excellent energy storage performance and electrostrictive strain benefiting from crossover region. ACS AMI 12, 23885 (2020)

    CAS  Google Scholar 

  16. C.L. Zhao, Y.L. Huang, J.G. Wu, Multifunctional barium titanate ceramics via chemical modification tuning phase structure. InfoMat 2, 1163 (2020)

    CAS  Google Scholar 

  17. M. Zhang, H.B. Yang, D. Li, L. Ma, Y. Lin, Giant energy storage efficiency and high recoverable energy storage density achieved in K0.5Na0.5NbO3-Bi(Zn0.5Zr0.5)O3 ceramics. J. Mater. Chem. C 8, 8777–8785 (2020)

    CAS  Google Scholar 

  18. Q. Chai, D. Yang, X.M. Zhao, X.L. Chao, Z.P. Yang, Lea-free (K, Na)NbO3-based ceramics with high optical transparency and large energy density. J. Am. Ceram. Soc. 101, 2321–2329 (2018)

    CAS  Google Scholar 

  19. B.Y. Qu, H.L. Du, Z.T. Yang, Q.H. Liu, T.H. Liu, Enhanced dielectric breakdown strength and energy storage density in lead-free relaxor ferroelectric ceramics prepared using transition liquid phase sintering. RSC. Adv. 6, 34381–34389 (2016)

    CAS  Google Scholar 

  20. H. Tao, J.G. Wu, Optimization of energy storage density in relaxor (K, Na, Bi)NbO3 ceramics. J. Mater. Sci. Mater. Electron. 28, 16199–16204 (2017)

    CAS  Google Scholar 

  21. L.F. Zhu, X.W. Lei, L. Zhao, M.I. Hussaina, G.Z. Zhao, B.P. Zhang, Phase structure and energy storage performance for BiFeO3-BaTiO3 based lead-free ferroelectric ceramics. Ceram. Int. 45, 20266–20275 (2019)

    CAS  Google Scholar 

  22. D.G. Zheng, R.Z. Zuo, D.S. Zhang, Y. Li, Novel BiFeO3-BaTiO3-Ba(Mg1/3Nb2/3)O3 lead-free relaxor ferroelectric ceramics for energy-storage capacitors. J. Am. Ceram. Soc. 98, 2692–2695 (2015)

    CAS  Google Scholar 

  23. D.G. Zheng, R.Z. Zuo, Enhanced energy properties in La(Mg1/2Ti1/2)O3-Modified BiFeO3-BaTiO3 lead-free relaxor ferroelectric ceramics within a wide temperature range. J. Eur. Ceram. Soc. 37, 413–418 (2017)

    CAS  Google Scholar 

  24. H.N. Sun, X.J. Wang, Q.Z. Sun, X.X. Zhang, Z. Ma, M.Y. Guo, B.W. Sun, X.P. Zhu, Q.D. Liu, X.J. Lou, Large energy storage density in BiFeO3-BaTiO3-AgNbO3 lead-free relaxor ceramics. J. Eur. Ceram. Soc. 40, 2929–2935 (2020)

    CAS  Google Scholar 

  25. X.I. Gao, Y. Lia, J.W. Chen, C. Yuan, M. Zeng, A.H. Zhang, X.S. Gao, X.B. Lua, Q.L. Lia, J.M. Liu, High energy storage performances of Bi1-xSmxFe0.95Sc0.05O3 lead-free ceramics synthesized by rapid hot press sintering. J. Eur. Ceram. Soc. 39, 2331–2338 (2019)

    CAS  Google Scholar 

  26. G. Wang, J.L. Li, X. Zhang, Z.M. Fan, F. Yang, A. Feteira, D. Zhou, D.C. Sinclair, T. Ma, X.L. Tan, D.W. Wang, L.M. Reaney, Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity. Energy Environ. Sci. 12, 582–588 (2019)

    CAS  Google Scholar 

  27. D. Yang, J. Gao, L. Shu, Y.X. Liu, J.R. Yu, Y.Y. Zhang, X.P. Wang, B.P. Zhang, J.F. Li, Lead-free antiferroelectricniobates AgNbO3 and NaNbO3 for energy storage applications. J. Mater. Chem. A 8, 23724 (2020)

    CAS  Google Scholar 

  28. P.R. Ren, D. Ren, L. Sun, F.X. Yan, S. Yang, G.Y. Zhao, Grain size tailoring and enhanced energy storage properties of two-step sintered Nd3+-doped AgNbO3. J. Eur. Cream. Soc. 40, 4495–4502 (2020)

    CAS  Google Scholar 

  29. Y. Tian, L. Jin, H.F. Zhang, Z. Xu, X.Y. Wei, E.D. Politova, S.Y. Stefanovich, N.V. Tarakina, I. Abrahams, H.X. Yan, High energy density in silver niobate ceramics. J. Mater. Chem. A 4, 17279 (2016)

    CAS  Google Scholar 

  30. N.N. Luo, K. Han, L.J. Liu, B.L. Peng, X.P. Wang, C.Z. Hu, H.F. Zhou, Q. Feng, X.Y. Chen, Y.Z. Wei, Lead-free Ag1-3xLaxNbO3antiferroelectric ceramics with high-energy storage density and efficiency. J. Am. Ceram. Soc. 102, 4640–4647 (2019)

    CAS  Google Scholar 

  31. Z.N. Yan, D. Zhang, X.F. Zhou, H. Qi, H. Luo, K.C. Zhou, I. Abrahams, H.X. Yan, Silver niobate based lead-free ceramics with high energy storage density. J. Mater. Chem. A 7, 10702 (2019)

    CAS  Google Scholar 

  32. Q. Li, W.M. Zhang, C. Wang, L. Ning, C. Wang, Y. Wen, B. Hu, H.Q. Fan, Enhanced energy-storage performance of (1-x)(0.72Bi0.5Na0.5TiO3-0.28Bi0.2Sr0.7–0.1TiO3)-xLa ceramics. J. Alloys Compd. 775, 116–123 (2019)

    CAS  Google Scholar 

  33. J.L. Li, F. Li, Z. Xu, S.J. Zhang, Multilayer lead-free ceramic capacitors with ultrahigh energy density and efficiency. Adv. Mater. 30, 1802155 (2018)

    Google Scholar 

  34. X.S. Qiao, F.D. Zhang, D. Wu, B. Chen, X.M. Zhao, Z.H. Peng, X.D. Ren, P.F. Liang, X.L. Chao, Z.P. Yang, Superior comprehensive energy storage properties in Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chem. Eng. J. 388, 124158 (2020)

    CAS  Google Scholar 

  35. T.Y. Li, P.F. Chen, F. Li, C.C. Wang, Energy storage performance of Na0.5Bi0.5TiO3-SrTiO3 lead-free relaxors modified by AgNb0.85Ta0.15O3. Chem. Eng. J. 406, 127151 (2021)

    CAS  Google Scholar 

  36. Y.C. Wu, Y.Z. Fan, N.T. Liu, P. Peng, M.X. Zhou, S.G. Yan, F. Cao, X.L. Dong, G.S. Wang, Enhanced energy storage properties in sodium bismuth titanate-based ceramics for dielectric capacitor applications. J. Mater. Chem. C 7, 6222–6230 (2019)

    CAS  Google Scholar 

  37. Y. Hiruma, R. Aoyagi, H. Nagata, T. Takenaka, Ferroelectric piezoelectric properties of ceramics. Jpn. J. Appl. Phys. 44, 5040–5044 (2005)

    CAS  Google Scholar 

  38. J. Suchanicz, A. Kania, P. Czaja, A. Budziak, A. Niewiadomski, Structural, thermal, dielectric and ferroelectric properties of K0.5Bi0.5TiO3 ceramics. J. Eur. Ceram. Soc. 38, 567–574 (2018)

    CAS  Google Scholar 

  39. F. Li, X. Hou, T.Y. Li, R.J. Si, C.C. Wang, J.W. Zhai, Fine-grain induced outstanding energy storage performance in novel Bi0.5K0.5TiO3-Ba(Mg1/3Nb2/3)O3ceramics via a hot-pressing strategy. J. Mater. Chem. C 7, 12127 (2019)

    CAS  Google Scholar 

  40. F. Li, R.J. Si, T.Y. Li, C.C. Wang, J.W. Zhai, High energy storage performance and fast discharging speed in 0.7Bi0.5K0.5TiO3-0.3SrTiO3 ceramics via a novel rolling technology. Ceram. Int. 46, 6995–6998 (2020)

    CAS  Google Scholar 

  41. Y.X. Wei, N. Zhang, C.Q. Jin, W.T. Zhu, Y.M. Zeng, G. Xu, L. Gao, Z.Y. Jian, Bi0.5K0.5TiO3-CaTiO3 ceramics: appearance of the pseudocubic structure and ferroelectric–relaxor transition characters. J. Am. Ceram. Soc. 102, 3598–3608 (2019)

    CAS  Google Scholar 

  42. F. Li, B. Lu, J.W. Zhai, B. Shen, H.R. Zeng, S.G. Lu, G. Viola, H.X. Yan, Enhanced piezoelectric properties and electrocaloric effect in novel lead-free (Bi0.5K0.5)TiO3-La(Mg0.5Ti0.5)O3ceramics. J. Am. Ceram. Soc. 101, 5503–5513 (2018)

    CAS  Google Scholar 

  43. F.F. Li, Y.F. Liu, Y.N. Lyu, Y.H. Qi, Z.L. Yu, C.G. Lu, Huge strain and energy storage density of A-site La3+ donor doped (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics. Ceram. Int. 43, 106–110 (2017)

    CAS  Google Scholar 

  44. X.M. Zhao, X.M. Chen, H.Y. Ma, H.L. Lian, P. Liu, Microstructure dielectric and ferroelectric properties of 0.97[(Na0.5Bi0.5)(1-1.5x)Lax]TiO3-0.03BaTiO3lead-free ceramics. J. Alloys Compd. 630, 236–243 (2015)

    CAS  Google Scholar 

  45. X. Kong, L.T. Yang, Z.X. Cheng, S.J. Zhang, Ultrahigh energy storage properties in (Sr0.7Bi0.2)TiO3-Bi(Mg0.5Zr0.5)O3lead-free ceramics and potential for high-temperature capacitors. Materials 13, 180 (2020)

    CAS  Google Scholar 

  46. N.T. Liu, R.H. Liang, X.B. Zhao, C.H. Xu, Z.Y. Zhou, X.L. Dong, Novel bismuth ferrite-based lead-free ceramics with high energy and power density. J. Am. Ceram. Soc. 101, 3259–3265 (2018)

    CAS  Google Scholar 

  47. W.G. Ma, Y.W. Zhu, M.A. Marwat, P.Y. Fan, B. Xie, D. Salamon, Z.G. Ye, H.B. Zhang, Enhanced energy-storage performance with excellent stability under low electric fields in BNT-ST relaxor ferroelectric ceramics. J. Mater. Chem. C 7, 281 (2019)

    CAS  Google Scholar 

  48. F. Gao, X.L. Dong, C.L. Mao, W. Liu, H.L. Zhang, L.H. Yang, F. Cao, G.S. Wang, Energy-storage properties of 0.89Bi0.5Na0.5TiO3-0.06BaTiO3-0.05K0.5Na0.5NbO3 lead-free anti-ferroelectric ceramics. J. Am. Ceram. Soc. 94, 4382–4386 (2011)

    CAS  Google Scholar 

  49. X. Liu, C.L. Yuan, X.Y. Liu, Y. Li, G.H. Chen, X.Q. Li, F.H. Luo, Electric field-induced strains, conductivities and energy-storage properties in Na1/2Bi1/2TiO3-Ba(Mg1/3Nb2/3)O3 ceramics. J. Mater. Sci. Mater. Electron. 28, 4788–4795 (2017)

    CAS  Google Scholar 

  50. Y.R. Xu, Y.D. Hou, H.Y. Zhao, M.P. Zheng, M.K. Zhu, Enhanced high-temperature energy storage properties in fine-grained lead-free ceramic with high insulation resistivity. Mater. Lett. 249, 21–24 (2019)

    CAS  Google Scholar 

  51. Q. Li, M.Y. Li, C. Wang, M.C. Zhang, H.Q. Fan, Enhanced temperature stable dielectric properties and energy-storage density of BaSnO3-modified (Bi0.5Na0.5)0.94Ba0.06TiO3lead-free ceramics. Ceram. Int. 45, 19822–19828 (2019)

    CAS  Google Scholar 

  52. L. Zhang, Y.P. Pu, M. Chen, G. Liu, Antiferroelectric-like properties in MgO-modified 0.775Na0.5Bi0.5TiO3-0.225BaSnO3 ceramics for high power energy storage. J. Eur. Ceram. Soc. 38, 5388–5395 (2018)

    CAS  Google Scholar 

  53. L. Zhang, Y.P. Pu, M. Chen, T.C. Wei, W. Keipper, R.K. Shi, X. Guo, R. Li, X. Peng, High energy-storage density under low electric fields and improved optical transparency in novel sodium bismuth titanate-based lead-free ceramics. J. Eur. Ceram. Soc. 40, 71–77 (2020)

    CAS  Google Scholar 

  54. L. Zhang, Y.P. Pu, M. Chen, Influence of BaZrO3 additive on the energy-storage properties of 0.775Na0.5Bi0.5TiO3-0.225BaSnO3relaxor ferroelectrics. J. Alloys Compd. 775, 342–347 (2019)

    CAS  Google Scholar 

  55. Z.B. Pan, D. Hu, Y. Zhang, J.J. Liu, B. Shen, J.W. Zhai, Achieving high discharge energy density and efficiency with NBT-based ceramics for application in capacitors. J. Mater. Chem. C 7, 4072 (2019)

    CAS  Google Scholar 

  56. H. Wang, Q. Hu, X.Q. Liu, Q.J. Zheng, N. Jiang, Y. Yang, K.W. Kwok, C.G. Xu, D.M. Lin, A high-tolerance BNT-based ceramic with excellent energy storage properties and fatigue/frequency/thermal stability. Ceram. Int. 45, 23233–23240 (2019)

    CAS  Google Scholar 

  57. C. Wang, Q. Li, W.M. Zhang, B.B. Yan, A.K. Yadav, H.J. Peng, H.Q. Fan, [Bi0.5(Na0.4-xLixK0.1)]0.96Sr0.04Ti0.975Ta0.025O3 lead-free RELAXOR ceramics with the enhanced recoverable energy density. Ceram. Int. 46, 715–721 (2020)

    CAS  Google Scholar 

  58. B.B. Yan, H.Q. Fan, C. Wang, M.C. Zhang, A.K. Yadav, X.K. Zheng, H. Wang, Z.N. Du, Giant electro-strain and enhanced energy storage performance of (Y0.5Ta0.5)4+ co-doped 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 lead-free ceramics. Ceram. Int. 46, 281–288 (2020)

    CAS  Google Scholar 

  59. J.N. Sui, H.Q. Fan, H.J. Peng, J.W. Ma, A.K. Yadav, W. Chao, M.C. Zhang, G.Z. Dong, Enhanced energy-storage performance and temperature-stable dielectric properties of (1-x)[(Na0.5Bi0.5)0.95Ba0.05]0.98La0.02TiO3-xK0.5Na0.5NbO3lead-free ceramics. Ceram. Int. 45, 20427–20434 (2019)

    CAS  Google Scholar 

  60. X.F. Zhou, H. Qi, Z.N. Yan, G.L. Xue, H. Luo, D. Zhang, Large energy density with excellent stability in fine-grained (Bi0.5Na0.5)TiO3-based lead-free ceramics. J. Eur. Ceram. Soc. 39, 4053–4059 (2019)

    CAS  Google Scholar 

  61. N. Huang, H.X. Liu, H. Hao, Z.H. Yao, M.H. Cao, J. Xie, Energy storage properties of MgO-doped 0.5Bi0.5Na0.5TiO3-0.5SrTiO3 ceramics. Ceram. Int. 45, 14921–14927 (2019)

    CAS  Google Scholar 

  62. M. Chen, T.C. Wei, L. Zhang, X. Peng, X. Guo, R.K. Shi, Microstructures and dielectric properties of (Na0.5Bi0.5)0.775Ba0.225Ti0.775Sn0.225O3relaxor ferroelectric with Bi2O3-B2O3-ZnO glass addition. J. Mater. Sci. Mater. Electron. 30, 11412–11418 (2019)

    CAS  Google Scholar 

  63. P. Shi, L.G. Zhu, W.W. Gao, Z.H. Yu, X.J. Lou, X.J. Wang, Z.M. Yang, S. Yang, Large energy storage properties of lead-free (1-x)(0.72Bi0.5Na0.5TiO3-0.28SrTiO3)-xBiAlO3 ceramics at broad temperature range. J. Alloys Compd. 784, 788–793 (2019)

    CAS  Google Scholar 

  64. Y.P. Pu, L. Zhang, X. Guo, M.T. Yao, Improved energy storage properties of 0.55Bi0.5Na0.5TiO3-0.45Ba0.85Ca0.15Ti0.85Zr0.1Sn0.05O3 ceramics by microwave sintering. Ceram. Int. 44, S242–S245 (2018)

    CAS  Google Scholar 

  65. L. Zhang, Y.P. Pu, M. Chen, R. Li, X. Guo, Y.F. Cui, Enhanced energy-storage properties of (1-x)Na0.5Bi0.5TiO3-xBaSnO3 ceramics. Ceram. Int. 44, S207–S210 (2018)

    CAS  Google Scholar 

  66. J. Yin, Y.X. Zhang, X. Lv, J.G. Wu, Ultrahigh energy-storage potential under low electric field in bismuth sodium titanate-based perovskite ferroelectrics. J. Mater. Chem. A 6, 9823 (2018)

    CAS  Google Scholar 

  67. C.W. Tao, X.Y. Geng, J. Zhang, R.X. Wang, Z.B. Gu, S.T. Zhang, Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3:ZnO relaxor ferroelectric composites with high breakdown electric field and large energy storage properties. J. Eur. Ceram. Soc. 38, 4946–4952 (2018)

    CAS  Google Scholar 

  68. B. Hu, H.Q. Fan, L. Ning, S. Gao, Z.J. Yao, Q. Li, Enhanced energy-storage performance and dielectric temperature stability of (1-x)(0.65Bi0.5Na0.5TiO3-0.35Bi0.1Sr0.85TiO3)-xKNbO3 ceramics. Ceram. Int. 44, 10968–10974 (2018)

    CAS  Google Scholar 

  69. B. Hu, H.Q. Fan, L. Ning, Y. Wen, C. Wang, High energy storage performance of [(Bi0.5Na0.5)0.94Ba0.06]0.97La0.03Ti1-x(Al0.5Nb0.5)xO3 ceramics with enhanced dielectric breakdown strength. Ceram. Int. 44, 15160–15166 (2018)

    CAS  Google Scholar 

  70. H. Xie, Y.Y. Zhao, L. Yang, S.J. Pang, C.L. Yuan, H. Wang, C.R. Zhou, Comparative studies on structure, dielectric, strain and energy storage properties of (Bi0.5Na0.5)0.94Ba0.06Ti0.965(Mg1/3Nb2/3)0.035O3 lead-free ceramics prepared by traditional and two-step sintering method. J. Mater. Sci. Mater. Electron. 29, 5349–5355 (2018)

    CAS  Google Scholar 

  71. K.R. Kandula, K. Banerjee, S.S.K. Raavi, S. Asthana, Enhanced electrocaloric effect and energy storage density of Nd-substituted 0.92NBT-0.08BT lead free ceramic. Phys. Status Solidi A 215, 1700915 (2018)

    Google Scholar 

  72. B.Y. Wang, L.H. Luo, X.J. Jiang, W.P. Li, H.B. Chen, Energy-storage properties of (1-x)Bi0.47Na0.47Ba0.06TiO3-xKNbO3 lead-free ceramics. J. Alloys Compd. 585, 14–18 (2014)

    CAS  Google Scholar 

  73. L. Zhang, X.Y. Pu, M. Chen, S.S. Bai, Y.P. Pu, Influence of BaSnO3 additive on the energy storage properties of Na0.5Bi0.5TiO3-based relaxor ferroelectrics. J. Eur. Ceram. Soc. 38, 2304–2311 (2018)

    CAS  Google Scholar 

  74. J. Yin, X. Lv, J.G. Wu, Enhanced energy storage properties of {Bi0.5[(Na0.8K0.2)1-zLiz]0.5}0.96Sr0.04(Ti1-x-yTaxNby)O3 lead-free ceramics. Ceram. Int. 43, 13541–13546 (2017)

    CAS  Google Scholar 

  75. Z.C. Liu, P.R. Ren, C.B. Long, X. Wang, Y.H. Wan, G.Y. Zhao, Enhanced energy storage properties of NaNbO3 and SrZrO3 modified Bi0.5Na0.5TiO3 based ceramics. J. Alloys Compd. 721, 538–544 (2017)

    CAS  Google Scholar 

  76. Q. Xu, J. Xie, Z.C. He, L. Zhang, M.H. Cao, X.D. Huang, M.T. Lanagan, H. Hao, Z.H. Yao, H.X. Liu, Energy-storage properties of Bi0.5Na0.5TiO3-BaTiO3-KNbO3 ceramics fabricated by wet-chemical method. J. Eur. Ceram. Soc. 37, 99–106 (2017)

    Google Scholar 

  77. Z.L. Yu, Y.F. Liu, M.Y. Shen, H. Qian, F.F. Li, Y.N. Lyu, Enhanced energy storage properties of BiAlO3 modified Bi0.5Na0.5TiO3-Bi0.5K0.5TiO3 lead-free antiferroelectric ceramics. Ceram. Int. 43, 7653–7659 (2017)

    CAS  Google Scholar 

  78. J. Shi, X. Liu, W.C. Tian, High energy-storage properties of Bi0.5Na0.5TiO3-BaTiO3-SrTi0.875Nb0.1O3 lead-free relaxor ferroelectrics. J. Mater. Sci. Technol. 34, 2371–2374 (2018)

    Google Scholar 

  79. A.K. Yadava, H.Q. Fan, B.B. Yan, C. Wang, J.W. Ma, M.C. Zhang, W.J. Wang, W.Q. Dong, S.R. Wang, Enhanced storage energy density and fatigue free properties for 0.94Bi0.50(Na0.78K0.22)0.50Ti1-x(Al0.50Nb0.50)xO3-0.06BaZrO3 ceramics. Ceram. Int. 46, 17044–17052 (2020)

    Google Scholar 

  80. D. Hu, Z.B. Pan, Z.Y. He, F. Yang, X. Zhang, P. Li, J.J. Liu, Significantly improved recoverable energy density and ultrafast discharge rate of Na0.5Bi0.5TiO3-based ceramics. Ceram. Int. 46, 15364–15371 (2020)

    CAS  Google Scholar 

  81. G. Liu, Y. Wang, G.Y. Han, J.H. Gao, L.J. Yu, M.Y. Tang, Y. Li, J.Z. Hu, L. Jin, Y. Yan, Enhanced electrical properties and energy storage performances of NBT-ST Pb-free ceramics through glass modification. J. Alloys Compd. 836, 154961 (2020)

    CAS  Google Scholar 

  82. K.Y. Wu, H. Wang, Z. Miao, S.X. Ding, Y.X. Qi, Y. Ming, W.J. Ding, H. Yuan, Q.J. Zheng, D.M. Lin, Improved energy storage properties of Sr(Zr0.8Nb0.16)O3-doped Bi0.47Na0.47Ba0.06TiO3 ceramics with excellent temperature/frequency stability. Ceram. Int. 46, 13159–13169 (2020)

    CAS  Google Scholar 

  83. G. Liu, L. Hu, Y.F. Wang, Z.Y. Wang, L.J. Yu, J.W. Lv, J. Dong, Y. Wang, M.Y. Tang, B. Guo, K. Yu, Y. Yan, Investigation of electrical and electric energy storage properties of La-doped Na0.3Sr0.4Bi0.3TiO3 based Pb-free ceramics. Ceram. Int. 46, 19375–19384 (2020)

    CAS  Google Scholar 

  84. Z.Y. Yang, Y. Yuan, L. Cao, E.Z. Li, S.R. Zhang, Relaxor ferroelectric (Na0.5Bi0.5)0.4Sr0.6TiO3-based ceramics for energy storage application. Ceram. Int. 46, 11282–11289 (2020)

    CAS  Google Scholar 

  85. D.X. Li, Z.Y. Shen, Z.P. Li, W.Q. Luo, X.C. Wang, Z.M. Wang, F.S. Song, Y.M. Li, P-E hysteresis loop going slim in Ba0.3Sr0.7TiO3-modified Bi0.5Na0.5TiO3 ceramics for energy storage applications. J. Adv. Ceram. 9, 183–192 (2020)

    CAS  Google Scholar 

  86. G.Z. Dong, H.Q. Fan, Y.X. Jia, H. Liu, Dielectric temperature stability and energy storage performance of B-site Sn4+-doped BNKBST ceramics. J. Mater. Sci. Mater. Electron. 31, 13620–13627 (2020)

    CAS  Google Scholar 

  87. F. Li, K. Yang, X. Liu, J. Zou, J.W. Zhai, B. Shen, P. Li, J. Shen, B.H. Liu, P. Chen, K.Y. Zhao, H.R. Zeng, Temperature induced high charge-discharge performances in lead-free Bi0.5Na0.5TiO3-based ergodic relaxor ferroelectric ceramics. Scripta Mater. 141, 15–19 (2017)

    CAS  Google Scholar 

  88. Y. Mendez-González, A. Peláiz-Barranco, J.D.S. Guerra, The effect of La-substitution on the energy-storage properties of NBT-BT lead-free ceramics. J. Electron. 44, 87–94 (2020)

    Google Scholar 

  89. T.Y. Li, P.F. Chen, R.J. Si, F. Li, Y.M. Guo, C.C. Wang, High energy storage density and efficiency with excellent temperature and frequency stabilities under low operating field achieved in Ag0.91Sm0.03NbO3-modified Na0.5Bi0.5TiO3-BaTiO3 ceramics. J. Mater. Sci. Mater. Electron. 31, 16928–16937 (2020)

    CAS  Google Scholar 

  90. F. Yan, K.W. Huang, T. Jiang, X.F. Zhou, Y.J. Shi, G.L. Ge, B. Shen, J.W. Zhai, Significantly enhanced energy storage density and efficiency of BNT-based perovskite ceramics via A-site defect engineering. Energy Storage Mater. 30, 392–400 (2020)

    Google Scholar 

  91. F. Yan, Y.J. Shi, X.F. Zhou, K. Zhu, B. Shen, J.W. Zhai, Optimization of polarization and electric field of bismuth ferrite-based ceramics for capacitor applications. Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.127945

    Article  Google Scholar 

  92. H. Qi, R.Z. Zuo, Linear-like lead-free relaxorantiferroelectric (Bi0.5Na0.5)TiO3-NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency. J. Mater. Chem. A 7, 3971 (2019)

    CAS  Google Scholar 

  93. M.X. Zhou, R.H. Liang, Z.Y. Zhou, S.G. Yan, X.L. Dong, Novel sodium niobate-based lead-free ceramics as new environment-friendly energy storage materials with high energy density, high power density, and excellent stability. ACS Sustain. Chem. Eng. 6, 12755–12765 (2018)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (Grant Nos. 51872001 and 51572001). This work was supported in part by the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (Grant No. KF201803).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Cheng or Chunchang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 933 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Li, T., Cao, W. et al. Simultaneously achieved high energy-storage and superior charge–discharge performance in K0.5Bi0.5TiO3-based lead-free ceramics by A-site defect engineering. J Mater Sci: Mater Electron 32, 12121–12133 (2021). https://doi.org/10.1007/s10854-021-05840-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05840-7

Navigation