Skip to main content
Log in

Investigation of Ti doping on the structural, optical, and magnetic properties of ZnO nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ti-doped ZnO (TixZn1-xO x = 0.00, 0.05, 0.10, 0.15) nanoparticles have been synthesized through co-precipitation approach. X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), UV–Visible spectroscopy, and Vibrating Sample Magnetometer (VSM) have been used to characterize the samples. X-Ray Diffraction (XRD) analysis manifested the hexagonal wurtzite structure. The crystallite size decreased from 37 to 29 nm as dopant concentration is increased. Fourier transform infrared analysis showed the absorption bands of ZnO, with few within the intensities. SEM investigation showed the irregular shape and agglomeration of the particles. Ti, Zn, and O composition were determined from EDX analysis and confirmed the purity of the samples. PL spectra showed a near-band edge emission and visible emission. Vibrating sample magnetometer (VSM) demonstrated pure and doped samples exhibited ferromagnetism behavior at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Dietl, Ferromagnetic semiconductors. Semicond. Sci. Technol. 17(4), 377–392 (2002)

    CAS  Google Scholar 

  2. H. Akinaga, H. Ohno, Semiconductor spintronics. IEEE Trans. Nanotechnol. 1(1), 19–31 (2002)

    Google Scholar 

  3. S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler, D.P. Norton, N. Theodoropoulou, L.A. Boatner, Wide band gap ferromagnetic semiconductors and oxides. J. Appl. Phys. 93(1), 1–13 (2003)

    CAS  Google Scholar 

  4. I. Malajovich, J.J. Berry, N. Samarth, D.D. Awschalom, Persistent sourcing of coherent spins for multifunctional semiconductor spintronics. Nature 411(6839), 770–772 (2001)

    CAS  Google Scholar 

  5. Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, H. Koinuma, High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: a series of oxide-diluted magnetic semiconductors and their properties. Appl. Phys. Lett. 78(24), 3824–3826 (2001)

    CAS  Google Scholar 

  6. K. Ueda, H. Tabata, T. Kawai, Magnetic and electric properties of transition-metal-doped ZnO films. Appl. Phys. Lett. 79(7), 988–990 (2001)

    CAS  Google Scholar 

  7. M. Ahmadipour, M. Hatami, H. Sadabadi, Magnetic property of Zn0.8CO0.2O diluted magnetic semiconductors by auto combustion method. Int. J. Curr. Eng. Technol. 3(1), 85 (2013)

    Google Scholar 

  8. Z. Yong, T. Liu, T. Uruga, H. Tanida, D. Qi, A. Rusydi, A.T. Wee, Ti-doped ZnO thin films prepared at different ambient conditions: electronic structures and magnetic properties. Materials 3(6), 3642–3653 (2010)

    CAS  Google Scholar 

  9. Q. Shao, C. Wang, J.A. Zapien, C.W. Leung, A. Ruotolo, Ferromagnetism in Ti-doped ZnO thin films. J. Appl. Phys. 117(17), 17B908 (2015)

    Google Scholar 

  10. K. Zheng, L. Gu, D. Sun, X. Mo, G. Chen, The properties of ethanol gas sensor based on Ti doped ZnO nanotetrapods. Mater. Sci. Eng., B 166(1), 104–107 (2010)

    CAS  Google Scholar 

  11. H. Huang, Y. Liu, J. Wang, M. Gao, X. Peng, Z. Ye, Self-assembly of mesoporous CuO nanosheets–CNT 3D-network composites for lithium-ion batteries. Nanoscale 5(5), 1785–1788 (2013)

    CAS  Google Scholar 

  12. M. Venkatesan, C.B. Fitzgerald, J.G. Lunney, J.M.D. Coey, Anisotropic ferromagnetism in substituted zinc oxide. Phys. Rev. Lett. 93(17), 177206 (2004)

    CAS  Google Scholar 

  13. J. Antony, S. Pendyala, D.E. McCready, M.H. Engelhard, D. Meyer, A. Sharma, Y. Qiang, Ferromagnetism in Ti-doped ZnO nanoclusters above room temperature. IEEE Trans. Magn. 42(10), 2697–2699 (2006)

    CAS  Google Scholar 

  14. T. Akilan, N. Srinivasan, R. Saravanan, Magnetic and optical properties of Ti doped ZnO prepared by solid state reaction method. Mater. Sci. Semicond. Process. 30, 381–387 (2015)

    CAS  Google Scholar 

  15. P.S. Shewale, N.K. Lee, S.H. Lee, K.Y. Kang, Y.S. Yu, Ti doped ZnO thin film based UV photodetector: Fabrication and characterization. J. Alloy. Compd. 624, 251–257 (2015)

    CAS  Google Scholar 

  16. A. Jamil, S. Fareed, N. Tiwari, C. Li, B. Cheng, X. Xu, M.A. Rafiq, Effect of titanium doping on conductivity, density of states and conduction mechanism in ZnO thin film. Appl. Phys. A 125(4), 238 (2019)

    Google Scholar 

  17. Z.Y. Ye, H.L. Lu, Y. Geng, Y.Z. Gu, Z.Y. Xie, Y. Zhang, D.W. Zhang, Structural, electrical, and optical properties of Ti-doped ZnO films fabricated by atomic layer deposition. Nanoscale Res. Lett. 8(1), 1–6 (2013)

    Google Scholar 

  18. M. Norouzi, M. Kolahdouz, P. Ebrahimi, M. Ganjian, R. Soleimanzadeh, K. Narimani, H. Radamson, Thermoelectric energy harvesting using array of vertically aligned Al-doped ZnO nanorods. Thin Solid Films 619, 41–47 (2016)

    CAS  Google Scholar 

  19. M. Yilmaz, G.Ü.V.E.N. Turgut, Titanium doping effect on the characteristic properties of sol-gel deposited ZnO thin films. Kovove Mater 53, 333–339 (2015)

    CAS  Google Scholar 

  20. S. Suwanboon, P. Amornpitoksuk, P. Bangrak, Synthesis, characterization and optical properties of Zn1− xTixO nanoparticles prepared via a high-energy ball milling technique. Ceram. Int. 37(1), 333–340 (2011)

    CAS  Google Scholar 

  21. S.A. Ahmed, Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results in Physics 7, 604–610 (2017)

    Google Scholar 

  22. J. Vasudevan, S. Johnson Jeyakumar, B. Arunkumar, M. Jothibas, A. Muthuvel, S. Vijayalakshmi, Optical and Magnetic Investigation of Cu Doped ZnO Nanoparticles Synthesized by Solid State Method (Today Procee, Mater, 2021). https://doi.org/10.1016/j.matpr.2020.12.429

    Book  Google Scholar 

  23. Z. Chamanzadeh, V. Ansari, M. Zahedifar, Investigation on the properties of La-doped and Dy-doped ZnO nanorods and their enhanced photovoltaic performance of Dye-Sensitized Solar Cells. Opt. Mater. 112, 110735 (2021)

    CAS  Google Scholar 

  24. D.E. Navarro-López, O. Rebeca Garcia-Varela, A.-M. Ceballos-Sanchez, G. Sanchez-Ante, D.A. Kaled Corona-Romero, A.-Z. Buentello-Montoya, E.R. López-Mena, Effective antimicrobial activity of ZnO and Yb-doped ZnO nanoparticles against Staphylococcus aureus and Escherichia coli. Mater. Sci. Engin. 123, 112004 (2021)

    Google Scholar 

  25. S. Muthukumaran, R. Gopalakrishnan, Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Opt. Mater. 34(11), 1946–1953 (2012)

    CAS  Google Scholar 

  26. V. Gandhi, R. Ganesan, H.H. Abdulrahman Syedahamed, M. Thaiyan, Effect of cobalt doping on structural, optical, and magnetic properties of ZnO nanoparticles synthesized by coprecipitation method. J Phys. Chem. C 118(18), 9715–9725 (2014)

    CAS  Google Scholar 

  27. S. Singhal, J. Kaur, T. Namgyal, R. Sharma, Cu-Doped ZnO nanoparticles: synthesis, structural and electrical properties. Phys. B 407, 1223–1226 (2012)

    CAS  Google Scholar 

  28. I. Darmadi, A. Taufik, R. Saleh, Analysis of optical and structural properties of Ti-doped ZnO nanoparticles synthesized by co-precipitation method. J. Phys. Conf. Ser. 1442(1), 012021 (2020)

    CAS  Google Scholar 

  29. P.S. Sundaram, S.S.R. Inbanathan, G. Arivazhagan, Structural and optical properties of Mn doped ZnO nanoparticles prepared by co-precipitation method. Phys. B 574, 411668 (2019)

    Google Scholar 

  30. I. Khan, S. Khan, R. Nongjai, H. Ahmed, W. Khan, Structural and optical properties of gel combustion synthesized Zr doped ZnO nanoparticles. Optic. Mater. 35, 1189–1193 (2013)

    CAS  Google Scholar 

  31. N.E. Indrajith, H.S. Bhojya Naik, R. Viswanath, I.K. Suresh Gowda, M.C. Prabhakara, Bright red luminescence emission of macroporous honeycomb-like Eu3+ ion-doped ZnO nanoparticles developed by gel-combustion technique. SN Appl. Sci. 2, 863–867 (2020)

    Google Scholar 

  32. E.I. Naik, H.B. Naik, R. Viswanath, B.R. Kirthan, M.C. Prabhakara, Effect of zirconium doping on the structural, optical, electrochemical and antibacterial properties of ZnO nanoparticles prepared by sol-gel method. Chem. Data Collect. 29, 100505–100511 (2020)

    CAS  Google Scholar 

  33. Norouzzadeh, P., Mabhouti, K., Golzan, M. M., Naderali, R. (2019) Comparative study on dielectric and structural properties of undoped, Mn-doped, and Ni-doped ZnO nanoparticles by impedance spectroscopy analysis. Journal of Materials Science: Materials in Electronics, 1–13.

  34. A. Sohail, M. Faraz, H. Arif, S.A. Bhat, A.A. Siddiqui, B. Bano, Deciphering the interaction of bovine heart cystatin with ZnO nanoparticles: Spectroscopic and thermodynamic approach. Int. J. Biol. Macromol. 95, 1056–1063 (2017)

    CAS  Google Scholar 

  35. N.C.S. Selvam, J.J. Vijaya, L.J. Kennedy, Effects of morphology and Zr doping on structural, optical, and photocatalytic properties of ZnO nanostructures. Ind. Eng. Chem. Res. 51, 16333–16345 (2012)

    Google Scholar 

  36. P.V. Rajkumar, K. Ravichandran, K. Karthika, B. Sakthivel, B. Muralidharan, Enhancement of electrical conductivity of sol–gel doped ZnO films through Zr doping and vacuum annealing. Mater. Pro. Rep. 31, 234–240 (2015)

    Google Scholar 

  37. D. Fang, C. Li, N. Wang, P. Li, P. Yao, Structural and optical properties of Mg-doped ZnO thin films prepared by a modified Pechini method. Cryst. Res. Technol. 48, 265–272 (2013)

    CAS  Google Scholar 

  38. K.P. Shinde, R.C. Pawar, B.B. Sinha, H.S. Kim, S.S. Oh, K.C. Chung, Optical and magnetic properties of Ni doped ZnO planetary ball milled nanopowder synthesized by coprecipitation. Ceram. Intern. 40, 6799–16804 (2014)

    Google Scholar 

  39. L. Duan, X. Zhao, Y. Wang, W. Geng, F. Zhang, Structural and optical properties of (Mg, Al)-codoped ZnO nanoparticles synthesized by the autocombustion method. Ceram. Int. 41, 6373–6380 (2015)

    CAS  Google Scholar 

  40. U. Godavarti, V.D. Mote, M.V. Ramana Reddy, P. Nagaraju, Y. Vijaya Kumar, K.T. Dasari, M.P. Dasari, Precipitated cobalt doped ZnO nanoparticles with enhanced low temperature xylene sensing properties. Phys. B 553, 151–160 (2019)

    CAS  Google Scholar 

  41. M. Khenfouch, M. Baïtoul, M. Maaza, White photoluminescence from a grown ZnO nanorods/graphene hybrid nanostructure. Opt. Mater. 34(8), 1320–1326 (2012)

    CAS  Google Scholar 

  42. H.S. Hsu, J.C.A. Huang, Y.H. Huang, Y.F. Liao, M.Z. Lin, C.H. Lee, C.P. Liu, Evidence of oxygen vacancy enhanced room-temperature ferromagnetism in Co-doped ZnO. Appl. Phys. Lett. 88(24), 242507–242512 (2006)

    Google Scholar 

  43. J. Iqbal, B. Wang, X. Liu, D. Yu, B. He, R. Yu, Oxygen-vacancy-induced green emission and room-temperature ferromagnetism in Ni-doped ZnO nanorods. New J. Phys. 11(6), 063009–063014 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Balachandra Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raji, P., Kumar, K.B. Investigation of Ti doping on the structural, optical, and magnetic properties of ZnO nanoparticles. J Mater Sci: Mater Electron 32, 11751–11762 (2021). https://doi.org/10.1007/s10854-021-05803-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05803-y

Navigation