Skip to main content
Log in

Magneto-dielectric properties of PDMS–magnetite composite as a candidate for compact microstrip antennas in the C-band 5G frequency

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As one of the promising materials in antenna miniaturization, magneto-dielectric (MD) composites were synthesized from polydimethylsiloxane (PDMS) and magnetite (Fe3O4). MD materials attract much attention because of their multiple characteristics, including dielectric permittivity and magnetic permeability, while reducing the antenna wavelength. In this paper, MD composites were synthesized using a standard composition process from a 10:1 elastomer base and curing agent mixed with Fe3O4 nanopowder. To determine the effect on the material and electrical characteristics, Fe3O4 with weight ratios (x) of 10%, 20%, and 40% was added to the mixture. Several analyses were carried out, including XRD, SEM, VSM, and electromagnetic (EM) characterization, to determine the permittivity, permeability, and losses of samples at the microwave frequency. Based on the measurement, a relative permittivity of 2.54 and permeability of 2.67 were achieved from the MD composite with x = 40%, making it great for antenna miniaturization when used as an antenna substrate. Moreover, based on the simulation, the antenna with the proposed MD substrate has an acceptable performance at 3.5 GHz with a fractional bandwidth of 50.76%, directivity of 4.91 dBi, and dimensions 85.94% smaller than those of the antenna with the dielectric-only substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Huawei, 5G Spectrum-Public Policy Position. (In: Public Policy Position, 2016), https://www-file.huawei.com/-/media/CORPORATE/PDF/public-policy/public_policy_position_5g_spectrum.pdf. Accessed 3 Dec 2020

  2. Qualcomm, Global update on spectrum for 4G & 5G. (In: Qualcomm Inc., San Diego, CA, White Pap, 2020), https://www.qualcomm.com/media/documents/files/spectrum-for-4g-and-5g.pdf. Accessed 3 Dec 2020

  3. U. Patel, T.K. Upadhyaya, Design and analysis of compact μ-negative material loaded wideband electrically compact antenna for WLAN/WiMAX applications. Prog. Electromagn. Res. 79, 11–22 (2019)

    Article  Google Scholar 

  4. F. Farzami, K. Forooraghi, M. Norooziarab, Miniaturization of a microstrip antenna using a compact and thin magneto-dielectric substrate. IEEE Antennas Wirel. Propag. Lett. 10, 1540–1542 (2011)

    Article  Google Scholar 

  5. Z. Bendahmane, S. Ferouani, C. Sayah, High permittivity substrate and DGS technique for dual-band star-shape slotted microstrip patch antenna miniaturization. Prog. Electromagn. Res. 102, 163–174 (2020)

    Article  CAS  Google Scholar 

  6. A. Bakhtiari, Investigation of enhanced gain miniaturized patch antenna using near zero index metamaterial structure characteristics. IETE J. Res. (2019). https://doi.org/10.1080/03772063.2019.1644973

    Article  Google Scholar 

  7. Y. G. Adhiyoga, E. T. Rahardjo, Antenna Miniaturization using Artificial Magneto-Dielectric Material with Split-Ring Slot. In: 2018 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), pp 48–50 (2018)

  8. A.O. Karilainen, P.M.T. Ikonen, C.R. Simovski, S.A. Tretyakov, A.N. Lagarkov, S.A. Maklakov, K.N. Rozanov, S.N. Starostenko, Experimental studies on antenna miniaturisation using magneto-dielectric and dielectric materials. IET Microw. Antennas. Propag. 5, 495–502 (2011)

    Article  Google Scholar 

  9. R. Durbha, M.N. Afsar, Miniaturization techniques using magnetic materials for broadband antenna applications. IEEE Trans. Magn. 55, 1–7 (2019)

    Article  Google Scholar 

  10. L.B. Kong, Z.W. Li, G.Q. Lin, Y.B. Gan, Ni–Zn ferrites composites with almost equal values of permeability and permittivity for low-frequency antenna design. IEEE Trans. Magn. 43, 6–10 (2007)

    Article  CAS  Google Scholar 

  11. Z. Zheng, H. Zhang, J.Q. Xiao, F. Bai, Low loss NiZn/Co2Z composite ferrite with almost equal values of permeability and permittivity for antenna applications. IEEE Trans. Magn. 49, 4214–4217 (2013)

    Article  CAS  Google Scholar 

  12. Z. Zheng, X. Wu, A miniaturized UHF Vivaldi antenna with tailored radiation performance based on magneto-dielectric ferrite materials. IEEE Trans. Magn. 56, 1–5 (2020)

    Article  Google Scholar 

  13. A. Saini, A. Thakur, P. Thakur, Miniaturization and bandwidth enhancement of a microstrip patch antenna using magneto-dielectric materials for proximity fuze application. J. Electron. Mater. 46, 1902–1907 (2017)

    Article  CAS  Google Scholar 

  14. A.S.M. Alqadami, B. Mohammed, K.S. Bialkowski, A. Abbosh, Fabrication and characterization of flexible polymer iron oxide composite substrate for the imaging antennas of wearable head imaging systems. IEEE Antennas Wirel. Propag. Lett. 17, 1364–1368 (2018)

    Article  Google Scholar 

  15. L.A. Lara, D.L. Mancipe, Y. Pineda, J.J. Moreno, G. Peña-Rodríguez, Design and characterization of a magneto-dielectric composite in high frequency with aligned magnetite powders. J. Phys. 1386, 12103 (2019)

    CAS  Google Scholar 

  16. M.U.D. Rather, R. Samad, B. Want, Ferroelectric and magneto-dielectric properties of yttrium doped BaTiO 3–CoFe2O4 multiferroic composite. J. Mater. Sci. 29, 19164–19179 (2018)

    CAS  Google Scholar 

  17. Y. Lin, X. Liu, H. Yang, F. Wang, C. Liu, X. Wang, Laminated SrTiO3–Ni0.8Zn0.2Fe2O4 magneto-dielectric composites for high frequency applications. J. Alloys Compd. 688, 571–576 (2016)

    Article  CAS  Google Scholar 

  18. D.V.M. Paiva, M.A.S. Silva, R.G.M. de Oliveira, A.R. Rodrigues, L. Fechine, A.S.B. Sombra, P.B.A. Fechine, Magneto-dielectric composite based on Y3Fe5O12–CaTiO3 for radio frequency and microwave applications. J. Alloys. Compd. 783, 652–661 (2019)

    Article  CAS  Google Scholar 

  19. A.S.M. Alqadami, M.F. Jamlos, M.A. Jamlos, Efficacy of a wideband flexible antenna on a multilayer polymeric nanocomposites Fe3O4–PDMS substrate for wearable applications. Curr. Appl. Phys. 19, 1259–1265 (2019)

    Article  Google Scholar 

  20. R. Raveendran, M.A.G. Namboothiry, Surface-treated Poly(dimethylsiloxane) as a gate dielectric in solution-processed organic field-effect transistors. ACS Omega 3, 11278–11285 (2018)

    Article  CAS  Google Scholar 

  21. P. Scherrer, Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 2, 98–100 (1918)

    Google Scholar 

  22. Y. Slimani, M.A. Almessiere, E. Hannachi, A. Baykal, A. Manikandan, M. Mumtaz, F. Ben Azzouz, Influence of WO3 nanowires on structural, morphological and flux pinning ability of YBa2Cu3Oy superconductor. Ceram. Int. 45, 2621–2628 (2019)

    Article  CAS  Google Scholar 

  23. S.K. Abdel-Aal, A.S. Abdel-Rahman, Graphene influence on the structure, magnetic, and optical properties of rare-earth perovskite. J. Nanoparticle Res. 22, 267 (2020)

    Article  CAS  Google Scholar 

  24. P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 8, 123–134 (2014)

    Article  Google Scholar 

  25. X. Cai, X. Jiang, W. Xie, J. Mu, D. Yin, Effect of particle size on the preparation and microwave absorption properties of FeSiAl magnetically soft alloy hollow microspheres. Def. Technol. 14, 477–483 (2018)

    Article  Google Scholar 

  26. A. Khan, A.M. Toufiq, F. Tariq, Y. Khan, R. Hussain, N. Akhtar, S.U. Rahman, Influence of Fe doping on the structural, optical and thermal properties of α-MnO2 nanowires. Mater. Res. Express. 6, 065043 (2019)

    Article  CAS  Google Scholar 

  27. P.K. Boruah, D.J. Borah, J. Handique, P. Sharma, P. Sengupta, M.R. Das, Facile synthesis and characterization of Fe3O4 nanopowder and Fe3O4/reduced graphene oxide nanocomposite for methyl blue adsorption: a comparative study. J. Environ. Chem. Eng. 3, 1974–1985 (2015)

    Article  CAS  Google Scholar 

  28. A.M. Nicolson, G.F. Ross, Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. 19, 377–382 (1970)

    Article  Google Scholar 

  29. W.B. Weir, Automatic measurement of complex dielectric constant and permeability at microwave frequencies. Proc. IEEE 62, 33–36 (1974)

    Article  Google Scholar 

  30. T. Nakamura, Snoek’s limit in high-frequency permeability of polycrystalline Ni–Zn, Mg–Zn, and Ni–Zn–Cu spinel ferrites. J. Appl. Phys. 88, 348–353 (2000)

    Article  CAS  Google Scholar 

  31. J. Zaid, M. Farahani, T.A. Denidni, Magneto-dielectric substrate-based microstrip antenna for RFID applications. IET Microw. Antennas Propag. 11, 1389–1392 (2017)

    Article  Google Scholar 

  32. E. Lagunas, C.G. Tsinos, S.K. Sharma, S. Chatzinotas, 5G cellular and fixed satellite service spectrum coexistence in C-band. IEEE Access 8, 72078–72094 (2020)

    Article  Google Scholar 

  33. C.A. Balanis, Antenna Theory: Analysis and Design, 4th edn. (Wiley, Hoboken, 2016).

    Google Scholar 

  34. K. Borah, N.S. Bhattacharyya, Magnetodielectric composite with ferrite inclusions as substrates for microstrip patch antennas at microwave frequencies. Compos. B. 43, 1309–1314 (2012)

    Article  CAS  Google Scholar 

  35. P.J. Gogoi, M.M. Rabha, S. Bhattacharyya, N.S. Bhattacharyya, Miniaturization of body worn antenna using nano magneto-dielectric composite as substrate in C-band. J. Magn. Magn. Mater. 414, 209–218 (2016)

    Article  CAS  Google Scholar 

  36. A. Saini, K. Rana, A. Thakur, P. Thakur, J.L. Mattei, P. Queffelec, Low loss composite nano ferrite with matching permittivity and permeability in UHF band. Mater. Res. Bull. 76, 94–99 (2016)

    Article  CAS  Google Scholar 

  37. R.A. Golda, A. Marikani, E.J. Alex, Development of novel Bi1–xSmxFeO3 based polymer—ceramic nanocomposite for microwave application. J. Mater. Sci. 31, 324–336 (2020)

    CAS  Google Scholar 

  38. A. Saini, A. Thakur, P. Thakur, Matching permeability and permittivity of Ni0.5Zn0.3Co0.2In0.1Fe1.9O4 ferrite for substrate of large bandwidth miniaturized antenna. J. Mater. Sci. 27, 2816–2823 (2016)

    CAS  Google Scholar 

  39. S.R. Bhongale, Mg–Nd–Cd ferrite as substrate for X-band microstrip patch antenna. J. Magn. Magn. Mater. 499, 165918 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Research and Technology/Indonesian Research and Innovation Agency (Kemenristek/BRIN) for research funding through the PMDSU scholarship program under Grant No. NKB-3039/UN2.RST/HKP.05.00/2020; and Nanotechnology Laboratory, Department of Electrical Engineering, Universitas Indonesia and Advanced Materials Laboratory, Department of Materials Engineering and Metallurgy, Universitas Indonesia for the research facilities to conduct the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eko Tjipto Rahardjo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhiyoga, Y.G., Rahman, S.F., Apriono, C. et al. Magneto-dielectric properties of PDMS–magnetite composite as a candidate for compact microstrip antennas in the C-band 5G frequency. J Mater Sci: Mater Electron 32, 11312–11325 (2021). https://doi.org/10.1007/s10854-021-05802-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05802-z

Navigation