Skip to main content
Log in

Impedance and Mössbauer spectroscopy study of BiCu3Ti3FeO12 dielectric matrix

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, an electroceramic of the perovskite family, BiCu3Ti3FeO12 (BCTFO), was synthesized by the solid-state reaction method. The structural study was performed by X-ray diffraction and Mössbauer and Raman spectroscopy. Electric and dielectric properties were analyzed by impedance spectroscopy and the Hakki-Coleman method. Due to the BCTFO is isostructural of the CaCu3Ti4O12 (CCTO), the BCTFO presents as a promissory electroceramic. Mössbauer spectroscopy reveals paramagnetic spectra to BCTFO, with two octahedral sites for iron ions. Regarding dielectric properties, for 1 Hz, BCTFO presents a high relative dielectric permittivity (εr ≈ 1 × 104) and dielectric loss (tan δ > 1) and εr = 230.88, tan δ ≈ 1 × 10–2 in the microwave range. The produced ceramic exhibited a high resonance frequency temperature coefficient (τf) with a value of + 2852 ppm °C−1, making it a candidate for fabrication of the thermostable electroceramic composites with other ceramic matrices with negative τf values improving the thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications (Wiley, Oxford, 2003).

    Book  Google Scholar 

  2. A. Petosa, Dielectric Resonator Antenna Handbook (Artech House, Boston, MA, 2007).

    Google Scholar 

  3. D. Kajfez, P. Guillon, Dielectric Resonators, 2nd edn. (Tucker, Lisle, 1998).

    Google Scholar 

  4. M.T. Sebastian, Dielectric Materials for Wireless Communication (Elsevier, Amsterdam, 2008). https://doi.org/10.1016/B978-0-08-045330-9.X0001-5

    Book  Google Scholar 

  5. A.F.L. Almeida, P.B.A. Fechine, M.P.F. Graça, M.A. Valente, A.S.B. Sombra, Structural and electrical study of CaCu3Ti4O12 (CCTO) obtained in a new ceramic procedure. J. Mater. Sci. Mater. Electron. 20, 163–170 (2009). https://doi.org/10.1007/s10854-008-9675-4

    Article  CAS  Google Scholar 

  6. S. De Almeida-Didry, C. Autret, A. Lucas, C. Honstettre, F. Pacreau, F. Gervais, Leading role of grain boundaries in colossal permittivity of doped and undoped CCTO. J. Eur. Ceram. Soc. 34, 3649–3654 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.06.009

    Article  CAS  Google Scholar 

  7. J. Li, M.A. Subramanian, H.D. Rosenfeld, C.Y. Jones, B.H. Toby, A.W. Sleight, Clues to the giant dielectric constant of CaCu 3 Ti 4 O 12 in the defect structure of “SrCu 3 Ti 4 O 12.” Chem. Mater. 16, 5223–5225 (2004). https://doi.org/10.1021/cm048345u

    Article  CAS  Google Scholar 

  8. M.A. Subramanian, A.W. Sleight, ACu3Ti4O12 and ACu3Ru4O12 perovskites: high dielectric constants and valence degeneracy. Solid State Sci. 4, 347–351 (2002). https://doi.org/10.1016/S1293-2558(01)01262-6

    Article  CAS  Google Scholar 

  9. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 151, 323–325 (2000). https://doi.org/10.1006/jssc.2000.8703

    Article  CAS  Google Scholar 

  10. P. Shi, P. Liang, Z. Yang, J. Yi, C. Ma, X. Chao, Z. Yang, Intrinsic and extrinsic dielectric responses in BiCu3Ti3FeO12 ceramics. Ceram. Int. 41, 3672–3676 (2015). https://doi.org/10.1016/j.ceramint.2014.11.037

    Article  CAS  Google Scholar 

  11. P. Liang, X. Wang, X. Chao, Z. Yang, Electric response and improved dielectric properties in BiCu3Ti3FeO12. J. Alloys Compd. 734, 9–15 (2018). https://doi.org/10.1016/j.jallcom.2017.11.049

    Article  CAS  Google Scholar 

  12. C.-M. Wang, K.-S. Kao, S.-Y. Lin, Y.-C. Chen, S.-C. Weng, Processing and properties of CaCu3Ti4O12 ceramics. J. Phys. Chem. Solids. 69, 608–610 (2008). https://doi.org/10.1016/j.jpcs.2007.07.049

    Article  CAS  Google Scholar 

  13. M. Ahmadipour, M.F. Ain, Z.A. Ahmad, A short review on copper calcium titanate (CCTO) electroceramic: synthesis, dielectric properties, film deposition, and sensing application. Nano-Micro Lett. 8, 291–311 (2016). https://doi.org/10.1007/s40820-016-0089-1

    Article  CAS  Google Scholar 

  14. R.N.P. Choudhary, U. Bhunia, Structural, dielectric and electrical properties of ACu3Ti4O12 (A = Ca, Sr and Ba). J. Mater. Sci. 37, 5177–5182 (2002). https://doi.org/10.1023/A:1021019412533

    Article  CAS  Google Scholar 

  15. B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans. Microw. Theory Tech. 8, 402–410 (1960). https://doi.org/10.1109/TMTT.1960.1124749

    Article  Google Scholar 

  16. M.A.S. Silva, T.S.M. Fernandes, A.S.B. Sombra, An alternative method for the measurement of the microwave temperature coefficient of resonant frequency (τf). J. Appl. Phys. 112, 074106 (2012). https://doi.org/10.1063/1.4755799

    Article  CAS  Google Scholar 

  17. H.M. Rietveld, Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 22, 151–152 (1967). https://doi.org/10.1107/S0365110X67000234

    Article  CAS  Google Scholar 

  18. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969). https://doi.org/10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  19. B.H. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001). https://doi.org/10.1107/S0021889801002242

    Article  CAS  Google Scholar 

  20. C. Pascoal, R. Machado, V.C. Pandolfelli, Determinação de fase vítrea em bauxitas refratárias. Cerâmica 48, 61–69 (2002). https://doi.org/10.1590/S0366-69132002000200004

    Article  CAS  Google Scholar 

  21. A. Haque, A. Shukla, U. Dutta, D. Ghosh, A. Gayen, P. Mahata, M. Vasundhara, A.K. Kundu, M.M. Seikh, Incompatible magnetic and dielectric properties of BiCu3-xMnxTi4-yMyO12 (x = 0 & 0.5; y = 1 & 1.5 and M = Fe & Mn). Ceram. Int. 46, 5907–5912 (2020). https://doi.org/10.1016/j.ceramint.2019.11.043

    Article  CAS  Google Scholar 

  22. N. Kolev, R.P. Bontchev, A.J. Jacobson, V.N. Popov, V.G. Hadjiev, A.P. Litvinchuk, M.N. Iliev, Raman spectroscopy of CaCu3Ti4O12. Phys. Rev. B 66, 132102 (2002). https://doi.org/10.1103/PhysRevB.66.132102

    Article  CAS  Google Scholar 

  23. K. Chen, Y. Wu, J. Liao, J. Liao, J. Zhu, Raman and dielectric spectra of CaCu 3 Ti 3.9 O 12 Ceramics. Integr. Ferroelectr. 97, 143–150 (2008). https://doi.org/10.1080/10584580802089023

    Article  CAS  Google Scholar 

  24. C. Mu, Y. Song, H. Wang, X. Wang, Room temperature magnetic and dielectric properties of cobalt doped CaCu3Ti4O12 ceramics. J. Appl. Phys. 117, 17B723 (2015). https://doi.org/10.1063/1.4916116

    Article  CAS  Google Scholar 

  25. J.R. MacDonald, Impedance spectroscopy: emphasizing solid materials and systems. Appl. Opt. 28, 1083 (1989)

    Article  Google Scholar 

  26. B. Lee, I. Abothu, P. Raj, C. Yoon, R. Tummala, Tailoring of temperature coefficient of capacitance (TCC) in nanocomposite capacitors. Scr. Mater. 54, 1231–1234 (2006). https://doi.org/10.1016/j.scriptamat.2005.12.026

    Article  CAS  Google Scholar 

  27. R.G.M. Oliveira, D.B. Freitas, G.S. Batista, J.E.V. de Morais, V.C. Martins, M.M. Costa, M.A.S. Silva, D.X. Gouvêa, C. Singh, A.S.B. Sombra, Dielectrical and structural studies of composite matrix BiVO4–CaTiO3 and temperature effects by impedance spectroscopy. J. Mater. Sci. Mater. Electron. 29, 16248–16258 (2018). https://doi.org/10.1007/s10854-018-9714-8

    Article  CAS  Google Scholar 

  28. K. Hirota, G. Komatsu, M. Yamashita, H. Takemura, O. Yamaguchi, Formation, characterization and sintering of alkoxy-derived bismuth vanadate. Mater. Res. Bull. 27, 823–830 (1992). https://doi.org/10.1016/0025-5408(92)90177-2

    Article  CAS  Google Scholar 

  29. Y. Zhang, T. Tong, W. Kinsman, P. Jiang, G. Yin, S. Li, Dielectric and impedance analysis of La doped-TbMnO3. J. Alloys Compd. 549, 358–361 (2013). https://doi.org/10.1016/j.jallcom.2012.09.005

    Article  CAS  Google Scholar 

  30. R.G.M. Oliveira, D.B. Freitas, M.C. Romeu, M.A.S. Silva, A.J.M. Sales, A.C. Ferreira, J.M.S. Filho, A.S.B. Sombra, Design and simulation of Na2Nb4O11 dielectric resonator antenna added with Bi2O3 for microwave applications. Microw. Opt. Technol. Lett. 58, 1211–1217 (2016). https://doi.org/10.1002/mop.29765

    Article  Google Scholar 

  31. M.A.S. Silva, R.G.M. Oliveira, A.S.B. Sombra, Dielectric and microwave properties of common sintering aids for the manufacture of thermally stable ceramics. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.07.021

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to CNPq (financial code 402045/2013-0), the US Air Force Office of Scientific Research (AFOSR) (FA9550-16-1-0127) and CNPq (Process: 402561/2007-4, Edital MCT/CNPq no 10/2007) for providing financial support and the X-Ray Laboratory of Federal University of Ceará for XRD analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. M. Oliveira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freitas, D.B., Bezerra Júnior, M.H., Oliveira, R.G.M. et al. Impedance and Mössbauer spectroscopy study of BiCu3Ti3FeO12 dielectric matrix. J Mater Sci: Mater Electron 32, 11607–11615 (2021). https://doi.org/10.1007/s10854-021-05768-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05768-y

Navigation