Skip to main content
Log in

Modified polyacrylamide gel synthesis of CeO2 nanoparticles by using cerium sulfate as metal source and its optical and photoluminescence properties

Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Developing a novel method to synthesize the highly dispersed nanosemiconductor materials is the major challenge in the expand the application field of luminescent materials. A modified polyacrylamide gel method has been used to synthesize the CeO2 nanoparticles by using cerium sulfate as metal source. The method makes full use of exothermic reaction of cerium sulfate in the precursor solution to polymerize acrylamide and methylene diacrylamide to obtain gel. The phase purity, particle size, optical properties, and photoluminescence properties of CeO2 nanoparticles demonstrate the strongly dependent behavior of acrylamide and methylene diacrylamide (AMMD) content. The synergistic effect of oxygen vacancy concentration, impurity functional group, and surface adsorbed oxygen leads to high photoluminescence performance of CeO2 nanoparticles prepared with the AMMD content of 0.3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. E.R. López-Mena, C.R. Michel, A.H. Martínez-Preciado, A. Elías-Zuñiga, Simple route to obtain nanostructured CeO2 microspheres and CO gas sensing performance. Nanoscale Res. Lett. 12, 169 (2017). https://doi.org/10.1186/s11671-017-1951-x

    Article  CAS  Google Scholar 

  2. T. Xian, L. Di, X. Sun, H. Li, Y. Zhou, H. Yang, Photo-fenton degradation of AO7 and photocatalytic reduction of Cr(VI) over CQD-decorated BiFeO3 nanoparticles under visible and NIR light irradiation. Nanoscale Res. Lett. 14, 397 (2019). https://doi.org/10.1186/s11671-019-3206-5

    Article  CAS  Google Scholar 

  3. H. Gao, X. Zhao, H. Zhang, J. Chen, S. Wang, H. Yang, Construction of 2D/0D/2D face-to-face contact g-C3N4@Au@Bi4Ti3O12 heterojunction photocatalysts for degradation of rhodamineB. J Electron Mater. 49, 5248-5259 (2020) https://doi.org/https://doi.org/10.21203/rs.2.24740/v1

  4. S. Guan, R. Li, X. Sun, T. Xian, H. Yang, Construction of novel ternary Au/LaFeO3/Cu2O composite photocatalysts for RhB degradation via photo-Fenton catalysis. Mater Technol. (2020). https://doi.org/10.1080/10667857.2020.1782062

    Article  Google Scholar 

  5. T. Xian, X. Sun, L. Di, H. Li, H. Yang, Improved photocatalytic degradation and reduction performance of Bi2O3 by the decoration of AuPt alloy nanoparticles. Opt. Mater. 111, 110614 (2020). https://doi.org/10.1016/j.optmat.2020.110614

    Article  CAS  Google Scholar 

  6. Q. Duan, J. Jia, X. Hong, Y. Fu, C. Wang, K. Zhou, X. Liu, H. Yang, Z.Y. Wang, Design of hole-transport-material free CH3NH3PbI3/CsSnI3 all-perovskite heterojunction efficient solar cells by device simulation. Sol. Energy. 201, 555–560 (2020). https://doi.org/10.1016/j.solener.2020.03.037

    Article  CAS  Google Scholar 

  7. C. Zhou, K. Cui, Y. Liu, L. Li, L. Zhang, M. Xu, S. Ge, Y. Wang, J. Yu, Ultrasensitive lab-on-paper device via Cu/Co double-doped CeO2 nanospheres as signal amplifiers for electrochemical/visual sensing of miRNA-155. Sensor. Actuat. B- Chem. 321, 128499 (2020). https://doi.org/10.1016/j.snb.2020.128499

    Article  CAS  Google Scholar 

  8. L. Jiang, C. Yuan, Z. Li, J. Su, Z. Yi, W. Yao, P. Wu, Z. Liu, S. Cheng, M. Pan, Multi-band and high-sensitivity perfect absorber based on monolayer grapheme metamaterial. Diamond Relat. Mater. 111, 108227 (2021). https://doi.org/10.1016/j.diamond.2020.108227

    Article  CAS  Google Scholar 

  9. M. Golkari, H. Shokrollahi, H. Yang, The influence of Eu cations on improving the magnetic properties and promoting the Ce solubility in the Eu, Ce-substituted garnet synthesized by the solid state route. Ceram. Int. 46, 8553–8560 (2020). https://doi.org/10.1016/j.ceramint.2019.12.085

    Article  CAS  Google Scholar 

  10. Z. Yi, J. Li, J. Lin, F. Qin, X. Chen, W. Yao, Z. Liu, S. Cheng, P. Wu, H. Li, Broadband polarization-insensitive and wide-angle solar energy absorber based on tungsten ring-disc array. Nanoscale. 12, 23077–23083 (2020). https://doi.org/10.1039/D0NR04502K

    Article  CAS  Google Scholar 

  11. G. Manibalan, G. Murugadoss, R. Thangamuthu, M.R. Kumar, R. Jayavel, CeO2-based heterostructure nanocomposite for electrochemical determination of l-cysteine biomolecule. Inorg. Chem. Commun. 113, 107793 (2020). https://doi.org/10.1016/j.inoche.2020.107793

    Article  CAS  Google Scholar 

  12. M.R. Khalifeh, H. Khalifeh, S.M. Arab, H. Yang, The role of Dy incorporation in the magnetic behavior and structural characterization of synthetic Ce, Bi-substituted yttrium iron garnet. Mater. Chem. Phys. 247, 122838 (2020). https://doi.org/10.1016/j.matchemphys.2020.122838

    Article  CAS  Google Scholar 

  13. Y. Zhang, Z. Yi, X. Wang, P. Chu, W. Yao, Z. Zhou, S. Cheng, Z. Liu, P. Wu, M. Pan, Y. Yi, Dual band visible metamaterial absorbers based on four identical ring patches. Phys. E. 127, 114526 (2021). https://doi.org/10.1016/j.physe.2020.114526

    Article  CAS  Google Scholar 

  14. M. Mogensen, T. Lindegaard, U.R. Hansen, Physical properties of mixed conductor solid oxide fuel cell anodes of doped CeO2. J. Electrochem. Soc. 141, 2122–2128 (1994). https://doi.org/10.1149/1.2055072

    Article  CAS  Google Scholar 

  15. E.T. Anthony, M.O. Ojemaye, A.I. Okoh, O.O. Okoh, Synthesis of CeO2 as promising adsorbent for the management of DNA harboring antibiotic resistance genes from tap-water. Chem. Eng. J. 401, 125562 (2020). https://doi.org/10.1149/1.2055072

    Article  CAS  Google Scholar 

  16. L. Ilieva, I. Ivanov, P. Petrova, G. Munteanu, T. Tabakova, Effect of Y-doping on the catalytic properties of CuO/CeO2 catalysts for water-gas shift reaction. Int. J. Hydr. Energ. 45, 26286–26299 (2020). https://doi.org/10.1016/j.ijhydene.2019.10.190

    Article  CAS  Google Scholar 

  17. H. Jiang, X. Li, S. Chen, H. Wang, P. Huo, g-C3N4 quantum dots-modified mesoporous CeO2 composite photocatalyst for enhanced CO2 photoreduction. J. Mater. Sci-Mater. El. 31, 20495–20512 (2020). https://doi.org/10.1007/s10854-020-04568-0

    Article  CAS  Google Scholar 

  18. R.B. Basavaraj, D. Navami, N.H. Deepthi, M. Venkataravanappa, R. Lokesh, K.H. Sudheerkumar, T.K. Sreelakshmi, Novel orange-red emitting Pr3+ doped CeO2 nanopowders for white light emitting diode applications. Inorg. Chem. Commun. 120, 108164 (2020). https://doi.org/10.1016/j.inoche.2020.108164

    Article  CAS  Google Scholar 

  19. H. Gao, H. Yang, G. Yang, S. Wang, Effects of oxygen vacancy and sintering temperature on the photoluminescence properties and photocatalytic activity of CeO2 nanoparticles with high uniformity. Mater. Technol. 33, 321–332 (2018). https://doi.org/10.1080/10667857.2018.1438222

    Article  CAS  Google Scholar 

  20. S.F. Wang, H.B. Lv, X.S. Zhou, Y.Q. Fu, X.T. Zu, Magnetic nanocomposites through polyacrylamide gel route. Nanosci. Nanotech. Let. 6, 758–771 (2014). https://doi.org/10.1166/nnl.2014.1796

    Article  CAS  Google Scholar 

  21. S. Wang, H. Gao, J. Li, Y. Wang, C. Chen, X. Yu, S. Tang, X. Zhao, G. Sun, D. Li, Comparative study of the photoluminescence performance and photocatalytic activity of CeO2/MgAl2O4 composite materials with an n-n heterojunction prepared by one-step synthesis and two-step synthesis methods. J. Phys. Chem. Solids. 150, 109891 (2021). https://doi.org/10.1016/j.jpcs.2020.109891

    Article  CAS  Google Scholar 

  22. S. Wang, H. Gao, G. Sun, Y. Li, Y. Wang, H. Liu, C. Chen, L. Yang, Structure characterization, optical and photoluminescence properties of scheelite-type CaWO4 nanophosphors: Effects of calcination temperature and carbon skeleton. Opt. Mater. 99, 109562 (2020). https://doi.org/10.1016/j.optmat.2019.109562

    Article  CAS  Google Scholar 

  23. G.L. Tan, D. Tang, D. Dastan, A. Jafari, X.T. Yin, Effect of heat treatment on electrical and surface properties of tungsten oxide thin films grown by HFCVD technique. Mat. Sci. Semicon. Proc. 122, 105506 (2021). https://doi.org/10.1016/j.mssp.2020.105506

    Article  CAS  Google Scholar 

  24. D. Dastan, Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol–gel. Appl. Phys. A. 123, 699 (2017). https://doi.org/10.1007/s00339-017-1309-3

    Article  CAS  Google Scholar 

  25. A. Jafari, K. Tahani, D. Dastan, S. Asgary, Z. Shi, X.T. Yin, W.D. Zhou, H. Garmestani, Ş. Ţălu. ion implantation of copper oxide thin films; statistical and experimental results. Surf. Interfaces. 18, 100463 (2020)

  26. V.A. Drebushchak, Thermal expansion of solids: review on theories. J. Therm. Anal. Calorim. 142, 1097–1113 (2020). https://doi.org/10.1007/s10973-020-09370-y

    Article  CAS  Google Scholar 

  27. R. Zamiri, S.A. Salehizadeh, H.A. Ahangar, M. Shabani, A. Rebelo, J.M.F. Ferreira, Dielectric and optical properties of Ni-and Fe-doped CeO2 nanoparticles. Appl. Phys. A-Mater. 125, 393 (2019). https://doi.org/10.1007/s00339-019-2689-3

    Article  CAS  Google Scholar 

  28. F. Altaf, R. Batool, R. Gill, Z.U. Rehman, H. Majeed, A. Ahmad, M. Shafiq, D. Dastan, G. Abbas, K. Jacob, Synthesis and electrochemical investigations of ABPBI grafted montmorillonite based polymer electrolyte membranes for PEMFC applications. Renew. Energy. 164, 709–728 (2021). https://doi.org/10.1016/j.renene.2020.09.104

    Article  CAS  Google Scholar 

  29. D. Dastan, N. Chaure, M. Kartha, Surfactants assisted solvothermal derived titania nanoparticles: synthesis and simulation. J. Mater. Sci-Mater. El. 28, 7788–7796 (2017). https://doi.org/10.1007/s10854-017-6474-9

    Article  CAS  Google Scholar 

  30. M. Asadzadeh, F. Tajabadi, D. Dastan, P. Sangpour, Z. Shi, N. Taghavinia, Facile deposition of porous fluorine doped tin oxide by Dr. Blade method for capacitive applications. Ceram. Int. 47, 5487–5494 (2021). https://doi.org/10.1016/j.ceramint.2020.10.131

    Article  CAS  Google Scholar 

  31. W. Hu, T. Li, X. Liu, D. Dastan, K. Ji, P. Zhao, 1550 nm pumped upconversion chromaticity modulation in Er3+ doped double perovskite LiYMgWO6 for anti-counterfeiting. J. Alloy. Compd. 818, 152933 (2020). https://doi.org/10.1016/j.jallcom.2019.152933

    Article  CAS  Google Scholar 

  32. S. Wang, H. Gao, L. Fang, Q. Hu, G. Sun, X. Chen, C. Yu, S. Tang, X. Yu, X. Zhao, G. Sun, H. Yang, Synthesis of novel CQDs/CeO2/SrFe12O19 magnetic separation photocatalysts and synergic adsorption-photocatalytic degradation effect for methylene blue dye removal. Chem. Eng. J. Adv. 6, 100089 (2021). https://doi.org/10.1016/j.ceja.2021.100089

    Article  Google Scholar 

  33. Q. Shi, Y. Yue, Y. Qu, S. Liu, J. Kang, Structure and chemical durability of calcium iron phosphate glasses doped with La2O3 and CeO2. J. Non-Cryst. Solids. 516, 50–55 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.04.029

    Article  CAS  Google Scholar 

  34. M.A.M. Khan, W. Khan, M.N. Khan, A.N. Alhazaa, Enhanced visible light-driven photocatalytic performance of Zr doped CeO2 nanoparticles. J. Mater. Sci-Mater. El. 30, 8291–8300 (2019). https://doi.org/10.1007/s10854-019-01147-w

    Article  CAS  Google Scholar 

  35. D. Pinheiro, K.R.S. Devi, K. Karthik, A. Jose, S. Sugunan, Phytogenic CeO2-Sm2O3 nanocomposites with enhanced catalytic activity for reduction of 4-nitrophenol. Mater. Res. Express. 6, 084011 (2019). https://doi.org/10.1088/2053-1591/ab26e3

    Article  CAS  Google Scholar 

  36. C. Binet, M. Daturi, J.C. Lavalley, IR study of polycrystalline ceria properties in oxidised and reduced states. Catal. Today. 50, 207–225 (1999). https://doi.org/10.1016/s0920-5861(98)00504-5

    Article  CAS  Google Scholar 

  37. F. Bozon-Verduraz, A. Bensalem, IR studies of cerium dioxide: influence of impurities and defects. J. Chem. Soc. Faraday Trans. 90, 653–657 (1994). https://doi.org/10.1039/ft9949000653

    Article  CAS  Google Scholar 

  38. J. Li, S. Wang, G. Sun, H. Gao, X. Yu, S. Tang, X. Zhao, Z. Yi, Y. Wang, Y. Wei, Facile preparation of MgAl2O4/CeO2/Mn3O4 heterojunction photocatalyst and enhanced photocatalytic activity. Mater. Today. Chem. 19, 100390 (2020). https://doi.org/10.1016/j.mtchem.2020.100390

    Article  CAS  Google Scholar 

  39. M.A. Garza-Navarro, A. Torres-Castro, D.I. García-Gutiérrez, L. Ortiz-Rivera, Y.C. Wang, V.A. González-González, Synthesis of spinel-metal-oxide/biopolymer hybrid nanostructured materials. J. Phys. Chem. C. 114, 17574–17579 (2010). https://doi.org/10.1021/jp106811w

    Article  CAS  Google Scholar 

  40. S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin, S. Maensiri, Synthesis, structural and optical properties of CeO2 nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route. Mater. Chem. Phys. 115, 423–428 (2009). https://doi.org/10.1016/j.matchemphys.2008.12.031

    Article  CAS  Google Scholar 

  41. J. Zhen, X. Wang, D. Liu, S. Song, Z. Wang, Y. Wang, J. Li, F. Wang, H. Zhang, Co3O4@ CeO2 core@ shell cubes: Designed synthesis and optimization of catalytic properties. Chem. Eur. J. 20, 4469–4473 (2014). https://doi.org/10.1002/chem.201304109

    Article  CAS  Google Scholar 

  42. J. Zhang, Y. Cao, C.A. Wang, R. Ran, Design and preparation of MnO2/CeO2–MnO2 double-shelled binary oxide hollow spheres and their application in CO Oxidation. ACS. Appl. Mater. Inter. 8, 8670–8677 (2016). https://doi.org/10.1021/acsami.6b00002

    Article  CAS  Google Scholar 

  43. L. Zhang, L. Zhang, G. Xu, C. Zhang, X. Li, Z. Sun, D. Jia, Low-temperature CO oxidation over CeO2 and CeO2@ Co3O4 core–shell microspheres. New. J. Chem. 41, 13418–13424 (2017). https://doi.org/10.1039/C7NJ02542D

    Article  CAS  Google Scholar 

  44. G. Liu, Z. Cui, M. Han, S. Zhang, C. Zhao, C. Chen, G. Wang, H. Zhang, Ambient electrosynthesis of ammonia on a core-shell structured Au@CeO2 catalyst: contribution of oxygen vacancies in CeO2. Chem. Eur. J. 25, 5904–5911 (2019). https://doi.org/10.1002/chem.201806377

    Article  CAS  Google Scholar 

  45. I.S. Zhidkov, R.N. Maksimov, A.I. Kukharenko, L.D. Finkelstein, S.O. Cholakh, V.V. Osipov, E.Z. Kurmaev, Effect of post-annealing in air on optical and XPS spectra of Y2O3 ceramics doped with CeO2. Mendeleev Commun. 29, 102–104 (2019). https://doi.org/10.1016/j.mencom.2019.01.035

    Article  CAS  Google Scholar 

  46. Y. Guo, Q. Yu, H. Fang, H. Wang, J. Han, Q. Ge, X. Zhu, Ce-UiO-66 derived CeO2 octahedron catalysts for efficient ketonization of propionic acid. Ind. Eng. Chem. Res. 59, 17269–17278 (2020). https://doi.org/10.1021/acs.iecr.0c01238

    Article  CAS  Google Scholar 

  47. R. Shakoury, A. Arman, Ş Ţălu, D. Dastan, C. Luna, S. Rezaee, Stereometric analysis of TiO2 thin films deposited by electron beam ion assisted. Opt. Quant. Electron. 52, 270 (2020). https://doi.org/10.1007/s11082-020-02388-4

    Article  CAS  Google Scholar 

  48. D. Dastan, P.U. Londhe, N.B. Chaure, Characterization of TiO nanoparticles prepared using different surfactants by sol-gel method. J. Mater. Sci-Mater. El. 25, 3473–3479 (2014). https://doi.org/10.1007/s10854-014-2041-9

    Article  CAS  Google Scholar 

  49. D. Dastan, S.L. Panahi, N.B. Chaure, Characterization of titania thin films grown by dip-coating technique. J. Mater. Sci-Mater. El. 27, 12291–12296 (2016). https://doi.org/10.1007/s10854-016-4985-4

    Article  CAS  Google Scholar 

  50. T. Cheng, X. Sun, T. Xian, Z. Yi, R. Li, X. Wang, H. Yang, Tert-butylamine/oleic acid-assisted morphology tailoring of hierarchical Bi4Ti3O12 architectures and their application for photodegradation of simulated dye wastewater. Opt. Mater. 112, 110781 (2021). https://doi.org/10.1016/j.optmat.2020.110781

    Article  CAS  Google Scholar 

  51. H. Chen, Z. Jiang, X. Li, X. Lei, Effect of cerium nitrate concentration on morphologies, structure and photocatalytic activities of CeO2 nanoparticles synthesized by microwave interface method. Mater. Lett. 257, 126666 (2019). https://doi.org/10.1016/j.matlet.2019.126666

    Article  CAS  Google Scholar 

  52. S. Choudhary, K. Sahu, A. Bisht, R. Singhal, S. Mohapatra, Template-free and surfactant-free synthesis of CeO2 nanodiscs with enhanced photocatalytic activity. Appl. Surf. Sci. 503, 144102 (2019). https://doi.org/10.1016/j.apsusc.2019.144102

    Article  CAS  Google Scholar 

  53. D. Channeia, A. Nakaruk, P. Jannoey, S. Phanichphante, Preparation and characterization of Pd modified CeO2 nanoparticles for photocatalytic degradation of dye. Solid. State. Sci. 87, 9–14 (2018). https://doi.org/10.1016/j.solidstatesciences.2018.10.016

    Article  CAS  Google Scholar 

  54. G.H. Jaffari, A. Imran, M. Bah, A. Ali, A.S. Bhatti, U.S. Qurashi, S.I. Shah, Identification and quantification of oxygen vacancies in CeO2 nanocrystals and their role in formation of F-centers. Appl. Surf. Sci. 396, 547–553 (2017). https://doi.org/10.1016/j.apsusc.2016.10.193

    Article  CAS  Google Scholar 

  55. V.B. Koli, J.S. Kim, Photocatalytic oxidation for removal of gases toluene by TiO2-CeO2 nanocomposites under UV light irradiation. Mat. Sci. Semicon. Proc. 94, 70–79 (2019). https://doi.org/10.1016/j.mssp.2019.01.032

    Article  CAS  Google Scholar 

  56. M. Li, F. Liu, Z. Ma, W. Liu, J. Liang, M. Tong, Different mechanisms for E. coli disinfection and BPA degradation by CeO2-AgI under visible light irradiation. Chem. Eng. J. 371, 750–758 (2019). https://doi.org/10.1016/j.cej.2019.04.036

    Article  CAS  Google Scholar 

  57. G. Murugadoss, J. Ma, X. Ning, M.R. Kumar, Selective metal ions doped CeO2 nanoparticles for excellent photocatalytic activity under sun light and supercapacitor application. Inorg. Chem. Commun. 109, 107577 (2019). https://doi.org/10.1016/j.inoche.2019.107577

    Article  CAS  Google Scholar 

  58. Y. Pu, Y. Luo, X. Wei, J. Sun, L. Li, W. Zou, L. Dong, Synergistic effects of Cu2O-decorated CeO2 on photocatalytic CO2 reduction: surface lewis acid/base and oxygen defect. Appl. Catal. B-Environ. 254, 580–586 (2019). https://doi.org/10.1016/j.apcatb.2019.04.093

    Article  CAS  Google Scholar 

  59. A.R. Rajan, V. Vilas, A. Rajan, A. John, D. Philip, Synthesis of nanostructured CeO2 by chemical and biogenic methods: Optical properties and bioactivity. Ceram. Int. 46, 14048–14055 (2020). https://doi.org/10.1016/j.ceramint.2020.02.204

    Article  CAS  Google Scholar 

  60. K. Ye, Y. Li, H. Yang, M. Li, Y. Huang, S. Zhang, H. Ji, An ultrathin carbon layer activated CeO2 heterojunction nanorods for photocatalytic degradation of organic pollutants. Appl. Catal. B-Environ. 259, 118085 (2019). https://doi.org/10.1016/j.apcatb.2019.118085

    Article  CAS  Google Scholar 

  61. J. Malleshappa, H. Nagabhushana, S.C. Sharma, Y.S. Vidya, K.S. Anantharaju, S.C. Prashantha, B.D. Prasad, H.R. Naika, K. Lingaraju, B.S. Surendra, Leucas aspera mediated multifunctional CeO2 nanoparticles: structural, photoluminescent, photocatalytic and antibacterial properties. Spectrochim. Acta. A. 149, 452–462 (2015). https://doi.org/10.1016/j.saa.2015.04.073

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Project 2019DB02 supported by NPL, CAEP, the Science and Technology Research Program of Chongqing Education Commission of China (KJZD-K202001202, KJQN201901), the NSAF joint Foundation of China (U2030116), the Chongqing Natural Science Foundation (cstc2019jcyj-msxmX0310), the Talent Introduction Project (09924601), Major Cultivation Projects (18ZDPY01), and Research Project of Higher Education Teaching Reform (JGZC1903) of Chongqing Three Gorges University.

Author information

Authors and Affiliations

Authors

Contributions

SW involved in experiment, data analysis and paper writing, and supervision and paper revision. HG and LF performed supervision. ST did experimental test and analysis. QH, GS, XC, CY, HL, and XP performed writing- reviewing and editing.

Corresponding authors

Correspondence to Shifa Wang, Huajing Gao or Leiming Fang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Tang, S., Gao, H. et al. Modified polyacrylamide gel synthesis of CeO2 nanoparticles by using cerium sulfate as metal source and its optical and photoluminescence properties. J Mater Sci: Mater Electron 32, 10820–10834 (2021). https://doi.org/10.1007/s10854-021-05740-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05740-w

Navigation